Facebook
TwitterMost nonelderly Americans purchase health insurance through their employers, which sponsor a limited number of plans. Using a panel dataset representing over ten million insured lives, we estimate employees' preferences for different health plans and use the estimates to predict their choices if more plans were made available to them on the same terms, i.e., with equivalent subsidies and at large-group prices. Using conservative assumptions, we estimate a median welfare gain of 13 percent of premiums. A proper accounting of the costs and benefits of a transition from employer-sponsored to individually-purchased insurance should include this nontrivial gain. (JEL G22, I13, J32)
Facebook
TwitterThis dataset provides an estimate of the percent of Detroit residents who reported having health insurance at the time they completed the American Community Survey (ACS). The data is averaged over 5 years. This data can be also be accessed in Table S2701 on the American FactFinder website.Note that the data is provided by ZIP Code Tabulation Area (ZCTA), which may not exactly match USPS ZIP Code service areas. For more information: https://web.archive.org/web/20130617034846/http://www.census.gov/geo/reference/zctas.html
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Affordable Care Act created the new Pre-Existing Condition Insurance Plan (PCIP) program to make health insurance available to Americans denied coverage by private insurance companies because of a pre-existing condition. Coverage for people living with such conditions as diabetes, asthma, cancer, and HIV/AIDS has often been priced out of the reach of most Americans who buy their own insurance, and this has resulted in a lack of coverage for millions. The temporary program covers a broad range of health benefits and is designed as a bridge for people with pre-existing conditions who cannot obtain health insurance coverage in today’s private insurance market. To learn more, visit PCIP.gov or HealthCare.gov.
Note: * Massachusetts and Vermont are guarantee issue states that have already implemented many of the broader market reforms included in the Affordable Care Act that take effect in 2014. Existing commercial plans offering guaranteed coverage at premiums comparable to PCIP are already available in both states.
This is a dataset hosted by the Centers for Medicare & Medicaid Services (CMS). The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore CMS's Data using Kaggle and all of the data sources available through the CMS organization page!
This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.
Cover photo by Lily Banse on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Facebook
TwitterThe Florida Department of Transportation (FDOT or Department) has identified processed, authoritative datasets to support the preliminary spatial analysis of equity considerations. These processed datasets are available at larger geographies, such as the United States Census Bureau tract or county-level; however, additional raw datasets from other sources can be used to identify equity considerations. Most of this raw data is available at the Census block group, parcel, or point-level—but additional processing is required to make suitable for spatial analysis. For more information, contact Dana Reiding with the FDOT Forecasting and Trends Office (FTO). The American Community Survey (ACS) Health Insurance Coverage Variables – Boundaries layer is identified to support the equity community indicator of health. This layer contains the most current release of data from the ACS about health insurance coverage by type and by age group. These are 5-year estimates shown by tract, county, and state boundaries. The layer is owned and managed by the ESRI Demographics Team. Data Link: https://www.arcgis.com/home/item.html?id=a1574f4bb84f4da78b60fa0c8616eaa1 Available Geography Levels: State, County, Tract Owner/Managed By: ESRI Demographics FDOT Point of Contact: Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719
Facebook
TwitterTable from the American Community Survey (ACS) B27011 health insurance coverage status and type by employment status. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2015 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2015, 2020, 2021, 2022, 2023ACS Table(s): B27011Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterThis layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
SELECTED ECONOMIC CHARACTERISTICS HEALTH INSURANCE COVERAGE - DP03 Universe - Civilian noninstitutionalized population Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 Health insurance coverage in the ACS and other Census Bureau surveys define coverage to include plans and programs that provide comprehensive health coverage. Plans that provide insurance only for specific conditions or situations such as cancer and long-term care policies are not considered comprehensive health coverage. Likewise, other types of insurance like dental, vision, life, and disability insurance are not considered comprehensive health insurance coverage.
Facebook
TwitterThis layer shows Health Insurance Coverage. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Percent of Population with No Health Insurance Coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B27010, DP03Data downloaded from: Census Bureau's API for American Community SurveyDate of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Facebook
TwitterThis survey was sponsored by Harvard school of Public Health & Robert Wood Johnson Foundation and was conducted from July 26-September 2, 2001 among a nationally representative sample of 1206 repsondents 18 years of age and older. Topics dealt with health and health care issues in America and primarily included questions dealing with health insurance.
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at the Roper Center for Public Opinion Research at https://doi.org/10.25940/ROPER-31092256. We highly recommend using the Roper Center version as they may make this dataset available in multiple data formats in the future.
Facebook
TwitterThe Affordable Care Act created the new Pre-Existing Condition Insurance Plan (PCIP) program to make health insurance available to Americans denied coverage by private insurance companies because of a pre-existing condition. People living with conditions like diabetes, asthma, cancer, and HIV-AIDS have often been priced out of affordable health insurance options, and this has left millions without insurance.
PCIP is a temporary program that covers a broad range of health benefits and is designed as a bridge for people with pre-existing conditions who cannot obtain health insurance coverage in todays private insurance market. As of May 31, 2011 24,712 Americans had insurance through PCIP and the coverage is making a difference. As of May 31, 2011 data from the federally run PCIP plan shows that of claims paid for the top 20 diagnoses, 30.2 percent were for diagnoses of heart disease and 25.8 percent were for diagnoses of cancer. A range of professional, inpatient and drug treatments were provided to these individuals.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Health Insurance Coverage Status by Age (White Alone).Table ID.ACSDT1Y2024.B27001A.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, a...
Facebook
TwitterThe U.S. Census Bureau's Small Area Health Insurance Estimates program produces the only source of data for single-year estimates of health insurance coverage status for all counties in the U.S. by selected economic and demographic characteristics. This program is partially funded by the Centers for Disease Control and Prevention's (CDC) Division of Cancer Prevention and Control (DCPC). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the National Breast and Cervical Cancer Early Detection Program (NBCCEDP). For estimation, SAHIE uses statistical models that combine survey data from the American Community Survey (ACS) with administrative records data and Census 2020 data.
Facebook
TwitterThis feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for City of Bozeman, MT. The attributes come from the Selected Characteristics of Health Insurance Coverage in the United States table (S2701). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases. For example: Pct_Uninsured_EduB is the percent of the population that is without health insurance coverage, noninstitutionalized 26 years and over, with a Bachelor's degree or higherData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPct_Insured: Percent of the population with health insurance coveragePct_Uninsured: Percent of the population without health insurance coverageRace/Ethinicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAnnual Income:IncUnder25k: Household income below $25,000Inc25kto50k:Household income from $25,000 to $49,999Inc50kto75k: Household income from $50,000 to $74,999Inc75kto100k: Household income from $75,000 to $99,999IncOver100k: Household income $100,000 and overEducational Attainment (Civilian noninstitutionalized population 26 years and over):EduB: Bachelor's degree or higherEduHS: High school graduate (includes equivalency)EduNHS: Less than high school graduateEduA: Some college or associate's degreeDownload Selected Characteristics of Health Insurance Coverage in the United States data for Bozeman, MT. Additional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Direct-Purchase Health Insurance by Sex by Age.Table ID.ACSDT1Y2024.B27005.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns...
Facebook
TwitterThis feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for all census tracts within Gallatin County. The attributes come from the Selected Characteristics of Health Insurance Coverage in the United States table (S2701). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases. For example: Pct_Uninsured_EduB is the percent of the population that is without health insurance coverage, noninstitutionalized 26 years and over, with a Bachelor's degree or higherData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPct_Insured: Percent of the population with health insurance coveragePct_Uninsured: Percent of the population without health insurance coverageRace/Ethinicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAnnual Income:IncUnder25k: Household income below $25,000Inc25kto50k:Household income from $25,000 to $49,999Inc50kto75k: Household income from $50,000 to $74,999Inc75kto100k: Household income from $75,000 to $99,999IncOver100k: Household income $100,000 and overEducational Attainment (Civilian noninstitutionalized population 26 years and over):EduB: Bachelor's degree or higherEduHS: High school graduate (includes equivalency)EduNHS: Less than high school graduateEduA: Some college or associate's degreeDownload Selected Characteristics of Health Insurance Coverage in the United States data for Gallatin County, MT. Additional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/6168/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6168/terms
The National Medical Expenditure Survey (NMES) series provides information on health expenditures by or on behalf of families and individuals, the financing of these expenditures, and each person's use of services. Public Use Tape 16 is the second public use data release from the NMES Health Insurance Plans Survey (HIPS). The purpose of the HIPS was to verify information reported by respondents to two components of the NMES, the Household Survey and the Survey of American Indians and Alaska Natives (SAIAN), about their health insurance coverage. Additional details were also obtained from the employers, unions, and insurance companies through which coverage was provided. Parts 1 and 2 of Public Use Tape 16 are files that can be used to link data to Household Survey policyholders in NATIONAL MEDICAL EXPENDITURE SURVEY, 1987: POLICYHOLDERS OF PRIVATE INSURANCE: PREMIUMS, PAYMENT SOURCES, AND TYPES AND SOURCE OF COVERAGE PUBLIC USE TAPE 15. These link files permit identification of the records in the Private Health Insurance Benefit Database (Parts 3-17 of this collection) that describe the specific benefits held by the policyholders. These files also permit linkage to the personal and socioeconomic characteristics for these policyholders found in NATIONAL MEDICAL EXPENDITURE SURVEY, 1987: HOUSEHOLD SURVEY, POPULATION CHARACTERISTICS AND PERSON-LEVEL UTILIZATION, ROUNDS 1-4 PUBLIC USE TAPE 13. Future link files will permit linkage of the Benefit Database to persons in the SAIAN and to dependents of policyholders in the Household Survey. The section files of the Benefit Database, Parts 4-13, contain information on Health Maintenance Organizations (HMOs), copayments, basic coverage, hospital and medical services, cost-containment provisions, major medical coverage, dental care, prescription drugs, vision and hearing care, and Medicare benefits. The schedule files, Parts 14-17, contain specific deductible amounts, dollar benefits, coinsurance provisions, maximum benefits, and benefit periods. Wherever possible, copies of policies or booklets describing the coverage and benefits were obtained in order to abstract this information.
Facebook
TwitterThis layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Health insurance coverage rates, from the American Community Survey, 2014 5-year Average, by Zip. For the Detroit Tri-County region. Data Driven Detroit calculated the rates by dividing the total number of insured by the total number of people in each age group.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Health Insurance Coverage Status by Sex by Age.Table ID.ACSDT1Y2024.B27001.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:
avganncount: Average number of cancer cases diagnosed annually.
avgdeathsperyear: Average number of deaths due to cancer per year.
target_deathrate: Target death rate due to cancer.
incidencerate: Incidence rate of cancer.
medincome: Median income in the region.
popest2015: Estimated population in 2015.
povertypercent: Percentage of population below the poverty line.
studypercap: Per capita number of cancer-related clinical trials conducted.
binnedinc: Binned median income.
medianage: Median age in the region.
pctprivatecoveragealone: Percentage of population covered by private health insurance alone.
pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.
pctpubliccoverage: Percentage of population covered by public health insurance.
pctpubliccoveragealone: Percentage of population covered by public health insurance only.
pctwhite: Percentage of White population.
pctblack: Percentage of Black population.
pctasian: Percentage of Asian population.
pctotherrace: Percentage of population belonging to other races.
pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.
This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:
statefips: The FIPS code representing the state.
countyfips: The FIPS code representing the county or census area within the state.
avghouseholdsize: The average household size in the region.
geography: The geographical location, typically represented as the county or census area name followed by the state name.
Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.
Facebook
TwitterMost nonelderly Americans purchase health insurance through their employers, which sponsor a limited number of plans. Using a panel dataset representing over ten million insured lives, we estimate employees' preferences for different health plans and use the estimates to predict their choices if more plans were made available to them on the same terms, i.e., with equivalent subsidies and at large-group prices. Using conservative assumptions, we estimate a median welfare gain of 13 percent of premiums. A proper accounting of the costs and benefits of a transition from employer-sponsored to individually-purchased insurance should include this nontrivial gain. (JEL G22, I13, J32)