30 datasets found
  1. t

    COMPUTERS AND INTERNET USE - DP02_PIN_T - Dataset - CKAN

    • portal.tad3.org
    Updated Nov 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COMPUTERS AND INTERNET USE - DP02_PIN_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/computers-and-internet-use--dp02_pin_t
    Explore at:
    Dataset updated
    Nov 17, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES COMPUTERS AND INTERNET USE - DP02 Universe - Total households Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 The 2008 Broadband Improvement Act mandated the collection of data about computer and internet use. As a result, three questions were added to the 2013 American Community Survey (ACS) to measure these topics. The computer use question asked if anyone in the household owned or used a computer and included four response categories for a desktop or laptop, a smartphone, a tablet or other portable wireless computer, and some other type of computer. Respondents selected a checkbox for “Yes” or “No” for each response category. Respondents could select all categories that applied. Question asked if any member of the household has access to the internet. “Access” refers to whether or not someone in the household uses or can connect to the internet, regardless of whether or not they pay for the service. If a respondent answers “Yes, by paying a cell phone company or Internet service provider”, they are asked to select the type of internet service.

  2. A

    Broadband Adoption and Computer Use by year, state, demographic...

    • data.amerigeoss.org
    • data.wu.ac.at
    csv, json, rdf, xml
    Updated Jul 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Broadband Adoption and Computer Use by year, state, demographic characteristics [Dataset]. https://data.amerigeoss.org/zh_CN/dataset/broadband-adoption-and-computer-use-by-year-state-demographic-characteristics
    Explore at:
    xml, json, rdf, csvAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States[old]
    Description

    This dataset is imported from the US Department of Commerce, National Telecommunications and Information Administration (NTIA) and its "Data Explorer" site. The underlying data comes from the US Census

    1. dataset: Specifies the month and year of the survey as a string, in "Mon YYYY" format. The CPS is a monthly survey, and NTIA periodically sponsors Supplements to that survey.

    2. variable: Contains the standardized name of the variable being measured. NTIA identified the availability of similar data across Supplements, and assigned variable names to ease time-series comparisons.

    3. description: Provides a concise description of the variable.

    4. universe: Specifies the variable representing the universe of persons or households included in the variable's statistics. The specified variable is always included in the file. The only variables lacking universes are isPerson and isHouseholder, as they are themselves the broadest universes measured in the CPS.

    5. A large number of *Prop, *PropSE, *Count, and *CountSE columns comprise the remainder of the columns. For each demographic being measured (see below), four statistics are produced, including the estimated proportion of the group for which the variable is true (*Prop), the standard error of that proportion (*PropSE), the estimated number of persons or households in that group for which the variable is true (*Count), and the standard error of that count (*CountSE).

    DEMOGRAPHIC CATEGORIES

    1. us: The usProp, usPropSE, usCount, and usCountSE columns contain statistics about all persons and households in the universe (which represents the population of the fifty states and the District and Columbia). For example, to see how the prevelance of Internet use by Americans has changed over time, look at the usProp column for each survey's internetUser variable.

    2. age: The age category is divided into five ranges: ages 3-14, 15-24, 25-44, 45-64, and 65+. The CPS only includes data on Americans ages 3 and older. Also note that household reference persons must be at least 15 years old, so the age314* columns are blank for household-based variables. Those columns are also blank for person-based variables where the universe is "isAdult" (or a sub-universe of "isAdult"), as the CPS defines adults as persons ages 15 or older. Finally, note that some variables where children are technically in the univese will show zero values for the age314* columns. This occurs in cases where a variable simply cannot be true of a child (e.g. the workInternetUser variable, as the CPS presumes children under 15 are not eligible to work), but the topic of interest is relevant to children (e.g. locations of Internet use).

    3. work: Employment status is divided into "Employed," "Unemployed," and "NILF" (Not in the Labor Force). These three categories reflect the official BLS definitions used in official labor force statistics. Note that employment status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by work status, even if they are otherwise considered part of the universe for the variable of interest.

    4. income: The income category represents annual family income, rather than just an individual person's income. It is divided into five ranges: below $25K, $25K-49,999, $50K-74,999, $75K-99,999, and $100K or more. Statistics by income group are only available in this file for Supplements beginning in 2010; prior to 2010, family income range is available in public use datasets, but is not directly comparable to newer datasets due to the 2010 introduction of the practice of allocating "don't know," "refused," and other responses that result in missing data. Prior to 2010, family income is unkown for approximately 20 percent of persons, while in 2010 the Census Bureau began imputing likely income ranges to replace missing data.

    5. education: Educational attainment is divided into "No Diploma," "High School Grad," "Some College," and "College Grad." High school graduates are considered to include GED completers, and those with some college include community college attendees (and graduates) and those who have attended certain postsecondary vocational or technical schools--in other words, it signifies additional education beyond high school, but short of attaining a bachelor's degree or equivilent. Note that educational attainment is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by education, even if they are otherwise considered part of the universe for the variable of interest.

    6. sex: "Male" and "Female" are the two groups in this category. The CPS does not currently provide response options for intersex individuals.

    7. race: This category includes "White," "Black," "Hispanic," "Asian," "Am Indian," and "Other" groups. The CPS asks about Hispanic origin separately from racial identification; as a result, all persons identifying as Hispanic are in the Hispanic group, regardless of how else they identify. Furthermore, all non-Hispanic persons identifying with two or more races are tallied in the "Other" group (along with other less-prevelant responses). The Am Indian group includes both American Indians and Alaska Natives.

    8. disability: Disability status is divided into "No" and "Yes" groups, indicating whether the person was identified as having a disability. Disabilities screened for in the CPS include hearing impairment, vision impairment (not sufficiently correctable by glasses), cognitive difficulties arising from physical, mental, or emotional conditions, serious difficulty walking or climbing stairs, difficulty dressing or bathing, and difficulties performing errands due to physical, mental, or emotional conditions. The Census Bureau began collecting data on disability status in June 2008; accordingly, this category is unavailable in Supplements prior to that date. Note that disability status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by disability status, even if they are otherwise considered part of the universe for the variable of interest.

    9. metro: Metropolitan status is divided into "No," "Yes," and "Unkown," reflecting information in the dataset about the household's location. A household located within a metropolitan statistical area is assigned to the Yes group, and those outside such areas are assigned to No. However, due to the risk of de-anonymization, the metropolitan area status of certain households is unidentified in public use datasets. In those cases, the Census Bureau has determined that revealing this geographic information poses a disclosure risk. Such households are tallied in the Unknown group.

    10. scChldHome:

  3. c

    Computers and Internet Use - Counties 2015-2019

    • covid19.census.gov
    • covid19-uscensus.hub.arcgis.com
    • +1more
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Computers and Internet Use - Counties 2015-2019 [Dataset]. https://covid19.census.gov/datasets/computers-and-internet-use-counties-2015-2019/api
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Computers and Internet Use. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  4. ACS Internet Access by Education Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • atlas-connecteddmv.hub.arcgis.com
    • +2more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  5. R

    American Sign Language Letters Object Detection Dataset - v1

    • public.roboflow.com
    zip
    Updated Jul 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Lee (2022). American Sign Language Letters Object Detection Dataset - v1 [Dataset]. https://public.roboflow.com/object-detection/american-sign-language-letters/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 27, 2022
    Dataset authored and provided by
    David Lee
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Bounding Boxes of Letters
    Description

    Overview

    The American Sign Language Letters dataset is an object detection dataset of each ASL letter with a bounding box. David Lee, a data scientist focused on accessibility, curated and released the dataset for public use.

    https://blog.roboflow.com/content/images/2020/10/alphabet-intro.gif" alt="Example Image">

    Use Cases

    One could build a model that reads letters in sign language. For example, Roboflow user David Lee wrote about how he made the model demonstrated above in this blog post

    Using this Dataset

    Use the fork button to copy this dataset to your own Roboflow account and export it with new preprocessing settings, or additional augmentations to make your model generalize better.

    About Roboflow

    Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

    Developers build computer vision models faster and more accurately with Roboflow.

    Roboflow Workmark

  6. 2024 American Community Survey: B28010 | Computers in Household (ACS 1-Year...

    • data.census.gov
    Updated Aug 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B28010 | Computers in Household (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/all/tables?q=SHIMMYSHIMMY%20COM
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Computers in Household.Table ID.ACSDT1Y2024.B28010.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housin...

  7. R

    American Sign Language Pose Dataset

    • universe.roboflow.com
    zip
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ASL Pose (2025). American Sign Language Pose Dataset [Dataset]. https://universe.roboflow.com/asl-pose/american-sign-language-pose-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    ASL Pose
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Handsigns
    Description

    American Sign Language Pose Dataset

    ## Overview
    
    American Sign Language Pose Dataset is a dataset for computer vision tasks - it contains Handsigns annotations for 4,342 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. m

    Data from: Dataset of Student Level Prediction in UAE

    • data.mendeley.com
    Updated Dec 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    shatha Ghareeb (2020). Dataset of Student Level Prediction in UAE [Dataset]. http://doi.org/10.17632/3g8dtwbjjy.1
    Explore at:
    Dataset updated
    Dec 18, 2020
    Authors
    shatha Ghareeb
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United Arab Emirates
    Description

    The dataset comprises novel aspects specifically, in terms of student grading in diverse educational cultures within the multiple countries – Researchers and other education sectors will be able to see the impact of having varied curriculums in a country. Dataset compares different levelling cases when student transfer from curriculum to curriculum and the unreliable levelling criteria set by schools currently in an international school. The collected data can be used within the intelligent algorithms specifically machine learning and pattern analysis methods, to develop an intelligent framework applicable in multi-cultural educational systems to aid in a smooth transition “levelling, hereafter” of students who relocate from a particular education curriculum to another; and minimize the impact of switching on the students’ educational performance. The preliminary variables taken into consideration when deciding which data to collect depended on the variables. UAE is a multicultural country with many expats relocating from regions such as Asia, Europe and America. In order to meet expats needs, UAE has established many international private schools, therefore UAE was chosen to be the location of study based on many cases and struggles in levelling declared by the Ministry of Education and schools. For the first time, we present this dataset comprising students’ records for two academic years that included math, English, and science for 3 terms. Selection of subject areas and number of terms was based on influence from other researchers in similar subject matters.

  9. F

    Native American Multi-Year Facial Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Native American Multi-Year Facial Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-historical-native-american
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Native American Multi-Year Facial Image Dataset, thoughtfully curated to support the development of advanced facial recognition systems, biometric identification models, KYC verification tools, and other computer vision applications. This dataset is ideal for training AI models to recognize individuals over time, track facial changes, and enhance age progression capabilities.

    Facial Image Data

    This dataset includes over 5,000+ high-quality facial images, organized into individual participant sets, each containing:

    Historical Images: 22 facial images per participant captured across a span of 10 years
    Enrollment Image: One recent high-resolution facial image for reference or ground truth

    Diversity & Representation

    Geographic Coverage: Participants from USA, Canada, Mexico and more and other Native American regions
    Demographics: Individuals aged 18 to 70 years, with a gender distribution of 60% male and 40% female
    File Formats: All images are available in JPEG and HEIC formats

    Image Quality & Capture Conditions

    To ensure model generalization and practical usability, images in this dataset reflect real-world diversity:

    Lighting Conditions: Images captured under various natural and artificial lighting setups
    Backgrounds: A wide range of indoor and outdoor backgrounds
    Device Quality: Captured using modern, high-resolution mobile devices for consistency and clarity

    Metadata

    Each participant’s dataset is accompanied by rich metadata to support advanced model training and analysis, including:

    Unique participant ID
    File name
    Age at the time of image capture
    Gender
    Country of origin
    Demographic profile
    File format

    Use Cases & Applications

    This dataset is highly valuable for a wide range of AI and computer vision applications:

    Facial Recognition Systems: Train models for high-accuracy face matching across time
    KYC & Identity Verification: Improve time-spanning verification for banks, insurance, and government services
    Biometric Security Solutions: Build reliable identity authentication models
    Age Progression & Estimation Models: Train AI to predict aging patterns or estimate age from facial features
    Generative AI: Support creation and validation of synthetic age progression or longitudinal face generation

    Secure & Ethical Collection

    Platform: All data was securely collected and processed through FutureBeeAI’s proprietary systems
    Ethical Compliance: Full participant consent obtained with transparent communication of use cases
    Privacy-Protected: No personally identifiable information is included; all data is anonymized and handled with care

    Dataset Updates & Customization

    To keep pace with evolving AI needs, this dataset is regularly updated and customizable. Custom data collection options include:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap:

  10. Software development and computer services, summary statistics, by North...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2017). Software development and computer services, summary statistics, by North American Industry Classification System (NAICS), inactive [Dataset]. http://doi.org/10.25318/2110022601-eng
    Explore at:
    Dataset updated
    Feb 6, 2017
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 225 series, with data for years 1997 - 2012 (not all combinations necessarily have data for all years), and is no longer being released. This table contains data described by the following dimensions (Not all combinations are available): Geography (15 items: Canada; Newfoundland and Labrador; Prince Edward Island; Nova Scotia; ...); North American Industry Classification System (NAICS) (3 items: Software publishers; Data processing, hosting, and related services; Computer systems design and related services); Summary statistics (5 items: Operating revenue; Operating expenses; Salaries, wages and benefits; Operating profit margin; ...).

  11. g

    Statistics Canada, Computer systems design and related services by province,...

    • geocommons.com
    Updated Jun 27, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2008). Statistics Canada, Computer systems design and related services by province, Canada, 2003 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 27, 2008
    Dataset provided by
    matia
    Statistics Canada
    Description

    This dataset explores Computer systems design and related services by province for 2003. Notes: - North American Industry Classification System (NAICS), 2002 - 54151. - Estimates for the most recent year are preliminary. Preliminary data are subject to revision. Due to rounding, components may not add to total (where applicable). - Operating revenue excludes investment income, capital gains, extraordinary gains and other non-recurring items. - Operating expenses exclude write-offs, capital losses, extraordinary losses, interest on borrowing, and other non-recurring items. - Salaries, wages and benefits include vacation pay and commissions for all employees for whom a T4 slip was completed and the employer portion of employee benefits for items such as Canada/Qubec Pension Plan or Employment Insurance premiums. - Operating profit margin is derived as follows: operating revenue minus operating expenses, expressed as a percentage of operating revenue. Source: Statistics Canada, CANSIM, table (for fee) 354-0005 and Catalogue no. 63-018-X. Last modified: 2008-05-23.

  12. d

    HCP_data

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Li, Jingwei (2023). HCP_data [Dataset]. http://doi.org/10.7910/DVN/SKXD1L
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Li, Jingwei
    Description

    Secondary data derived from the Human Connectome Project. Including the subject list used for the current study, the preprocessed resting-state functional connectivity, and the behavioral prediction accuracy of African Americans and white Americans in this dataset across multiple data splits. Data has been de-identified. People who want to use this data for replicating our study should follow the data usage agreement of the Human Connectome Project. For data protection purposes, behavioral scores and phenotypical information are not released in this repository. One should apply for data access permission from the Human Connectome Project to obtain such data.

  13. 2024 American Community Survey: B28009A | Presence of a Computer and Type of...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B28009A | Presence of a Computer and Type of Internet Subscription in Household (White Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B28009A?tid=ACSDT1Y2024.B28009A
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Presence of a Computer and Type of Internet Subscription in Household (White Alone).Table ID.ACSDT1Y2024.B28009A.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the natio...

  14. p

    Trends in American Indian Student Percentage (2013-2020): Middle School 245...

    • publicschoolreview.com
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2022). Trends in American Indian Student Percentage (2013-2020): Middle School 245 Computer School vs. New York vs. New York City Geographic District # 3 [Dataset]. https://www.publicschoolreview.com/middle-school-245-computer-school-profile
    Explore at:
    Dataset updated
    Jul 15, 2022
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    This dataset tracks annual american indian student percentage from 2013 to 2020 for Middle School 245 Computer School vs. New York and New York City Geographic District # 3

  15. D

    American Community Survey 2010-2014 5-YEAR PUMS

    • datalumos.org
    • dev.datalumos.org
    delimited
    Updated Oct 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2017). American Community Survey 2010-2014 5-YEAR PUMS [Dataset]. http://doi.org/10.3886/E100486V2
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Oct 20, 2017
    Dataset authored and provided by
    United States Department of Commerce. Bureau of the Census
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Dataset funded by
    Alfred P. Sloan Foundation
    National Science Foundation. Directorate for Social, Behavioral and Economic Sciences
    Description
    The Public Use Microdata Sample (PUMS) contains a sample of actual responses to the American Community Survey (ACS). The PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status). Each record in the file represents a single person, or--in the household-level dataset--a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. PUMS files for an individual year, such as 2014, contain records of data from approximately one percent of the United States population. As such, PUMS files covering a five-year period, such as 2010-2014, contain records of data from approximately five percent of the United States population.

    The PUMS files are much more flexible than the aggregate data available on American FactFinder, though the PUMS also tend to be more complicated to use. Working with PUMS data generally involves downloading large datasets onto a local computer and analyzing the data using statistical software such as R, SPSS, Stata, or SAS.

    Since all ACS responses are strictly confidential, many variables in the PUMS file have been modified in order to protect the confidentiality of survey respondents. For instance, particularly high incomes are "top-coded," uncommon birthplace or ancestry responses are grouped into broader categories, and the PUMS file provides a very limited set of geographic variables.

    NOTE: The current archive only contains the files for the entire US. The original website contains state-by-state files as well. The overall content is the same.
  16. p

    Trends in American Indian Student Percentage (2019-2023): L'ouverture...

    • publicschoolreview.com
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (2019-2023): L'ouverture Computer Technology Magnet Elementary School vs. Louisiana vs. St. Bernard Parish School District [Dataset]. https://www.publicschoolreview.com/l-ouverture-computer-technology-magnet-elementary-school-profile
    Explore at:
    Dataset updated
    Sep 21, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Bernard Parish School District, Louisiana
    Description

    This dataset tracks annual american indian student percentage from 2019 to 2023 for L'ouverture Computer Technology Magnet Elementary School vs. Louisiana and St. Bernard Parish School District

  17. m

    OpenSign - Kinect V2 Hand Gesture Data - American Sign Language

    • data.mendeley.com
    Updated May 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Osama Mazhar (2019). OpenSign - Kinect V2 Hand Gesture Data - American Sign Language [Dataset]. http://doi.org/10.17632/b9pf4k4vjj.1
    Explore at:
    Dataset updated
    May 30, 2019
    Authors
    Osama Mazhar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The attached file is a sample video of 10 volunteers who recorded 10 static gestures from American Sign Language. The dataset actually contains RGB and registered depth images in png and bin formats respectively. The letters/numbers taken from American Sign Language are A, F, D, L, 7, 5, 2, W, Y, None.

  18. d

    Data from: Community-Owned Fiber Networks: Value Leaders in America

    • search.dataone.org
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hessekiel, Kira (2023). Community-Owned Fiber Networks: Value Leaders in America [Dataset]. http://doi.org/10.7910/DVN/HHTTF1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hessekiel, Kira
    Description

    These datasets contain the raw data from the Berkman Klein Center and Responsive Communities Initiative Publication "Community-Owned Fiber Networks: Value Leaders in America." As described in our report, we used these data to calculate average yearly costs of broadband-minimum internet service from community-owned ISPs and their in-region competitors. These data were collected between November 2015 and September 2016. We collected advertised prices for residential data plans offered by 40 community-owned (typically municipally owned) Internet service providers (ISPs) that offer fiber-to-the-home (FTTH) service. We then identified the least-expensive service that meets the federal definition of “broadband”—at least 25 Mbps download and 3 Mbps upload—and compared advertised prices to those of private competitors in the same markets. We found that most community-owned FTTH networks charged less and offered prices that were clear and unchanging, whereas private ISPs typically charged initial low promotional or “teaser” rates that later sharply rose, usually after 12 months. We were able to make comparisons in 27 communities. We found that in 23 cases, the community-owned FTTH providers’ pricing was lower when averaged over four years. We invite other researchers to make use of the datasets. Please note we have removed the addresses used (when necessary) to generate price quotes. Please contact us if you have any questions or would like to learn more.

  19. 2024 American Community Survey: B28012 | Age and Enrollment Status by...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B28012 | Age and Enrollment Status by Computer Ownership and Internet Subscription Status (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B28012?q=B28012&g=9700000US4826580
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Age and Enrollment Status by Computer Ownership and Internet Subscription Status.Table ID.ACSDT1Y2024.B28012.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, s...

  20. Data from: 19th Century United States Newspaper Advert images with...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jan 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel van Strien; Daniel van Strien (2022). 19th Century United States Newspaper Advert images with 'illustrated' or 'non illustrated' labels [Dataset]. http://doi.org/10.5281/zenodo.4075211
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 11, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daniel van Strien; Daniel van Strien
    Area covered
    United States
    Description

    The Dataset contains images derived from the Newspaper Navigator (news-navigator.labs.loc.gov/), a dataset of images drawn from the Library of Congress Chronicling America collection (chroniclingamerica.loc.gov/).

    [The Newspaper Navigator dataset] consists of extracted visual content for 16,358,041 historic newspaper pages in Chronicling America. The visual content was identified using an object detection model trained on annotations of World War 1-era Chronicling America pages, including annotations made by volunteers as part of the Beyond Words crowdsourcing project.

    source: https://news-navigator.labs.loc.gov/

    One of these categories is 'advertisements. This dataset contains a sample of these images with additional labels indicating if the advert is 'illustrated' or 'not illustrated'.

    The data is organised as follows:

    • The images themselves can be found in `images.zip`
    • `newspaper-navigator-sample-metadata.csv` contains metadata about each image drawn from the Newspaper Navigator Dataset.
    • `ads.csv` contains the labels for the images as a CSV file
    • `sample.csv` contains additional metadata about the images (based on the newspapers those images came from).

    This dataset was created for use in an under-review Programming Historian tutorial (http://programminghistorian.github.io/ph-submissions/lessons/computer-vision-deep-learning-pt1) The primary aim of the data was to provide a realistic example dataset for teaching computer vision for working with digitised heritage material. The data is shared here since it may be useful for others. This data documentation is a work in progress and will be updated when the Programming Historian tutorial is released publicly.

    The metadata CSV file contains the following columns:

    - filepath
    - pub_date
    - page_seq_num
    - edition_seq_num
    - batch
    - lccn
    - box
    - score
    - ocr
    - place_of_publication
    - geographic_coverage
    - name
    - publisher
    - url
    - page_url
    - month
    - year
    - iiif_url

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). COMPUTERS AND INTERNET USE - DP02_PIN_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/computers-and-internet-use--dp02_pin_t

COMPUTERS AND INTERNET USE - DP02_PIN_T - Dataset - CKAN

Explore at:
Dataset updated
Nov 17, 2024
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES COMPUTERS AND INTERNET USE - DP02 Universe - Total households Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 The 2008 Broadband Improvement Act mandated the collection of data about computer and internet use. As a result, three questions were added to the 2013 American Community Survey (ACS) to measure these topics. The computer use question asked if anyone in the household owned or used a computer and included four response categories for a desktop or laptop, a smartphone, a tablet or other portable wireless computer, and some other type of computer. Respondents selected a checkbox for “Yes” or “No” for each response category. Respondents could select all categories that applied. Question asked if any member of the household has access to the internet. “Access” refers to whether or not someone in the household uses or can connect to the internet, regardless of whether or not they pay for the service. If a respondent answers “Yes, by paying a cell phone company or Internet service provider”, they are asked to select the type of internet service.

Search
Clear search
Close search
Google apps
Main menu