48 datasets found
  1. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Feb 22, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  2. p

    Cervical Cancer Risk Classification - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cervical Cancer Risk Classification - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/cervical-cancer-risk-classification
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.

  3. Number and rates of new cases of primary cancer, by cancer type, age group...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Number and rates of new cases of primary cancer, by cancer type, age group and sex [Dataset]. http://doi.org/10.25318/1310011101-eng
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  4. Cancer Incidence in the US by state and race

    • kaggle.com
    Updated Dec 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SKariuki (2018). Cancer Incidence in the US by state and race [Dataset]. https://www.kaggle.com/salomekariuki/cancer-incidence-in-the-us-by-state-and-race
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 17, 2018
    Dataset provided by
    Kaggle
    Authors
    SKariuki
    Area covered
    United States
    Description

    I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.

  5. D

    Data from: Breast cancer in Tanzanian, black American, and white American...

    • research.repository.duke.edu
    Updated Oct 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Broadwater, Gloria; Hall, Allison; Ong, Cecilia; Hyslop, Terry; Amsi, Patrick; Jackson, Kahima; Mremi, Alex; Mbulwa, Cosmas (2019). Data from: Breast cancer in Tanzanian, black American, and white American women: An assessment of prognostic and predictive features, including tumor infiltrating lymphocytes [Dataset]. http://doi.org/10.7924/r4bv7g09k
    Explore at:
    Dataset updated
    Oct 2, 2019
    Dataset provided by
    Duke Digital Repository
    Authors
    Broadwater, Gloria; Hall, Allison; Ong, Cecilia; Hyslop, Terry; Amsi, Patrick; Jackson, Kahima; Mremi, Alex; Mbulwa, Cosmas
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Jun 6, 2019
    Area covered
    Tanzania
    Dataset funded by
    This work was supported by a global cancer pilot grant from the Duke Global Health Institute and the Duke Cancer Institute
    Description

    Breast cancer is a major cause of morbidity and mortality for women in Sub-Saharan Africa and for black American women. There is evidence that the pathologic characteristics of breast cancers in both African women and black American women may differ from their counterparts of European ancestry. However, despite the great burden of disease, data on pathologic features of breast carcinoma in Sub-Saharan Africa is limited and often contradictory. This lack of information makes it difficult to prioritize resource use in efforts to improve breast cancer outcomes in the region. We examined consecutive cases of breast cancer in Tanzanian women (n=83), black American women (n=120), and white American women (n=120). Each case was assessed for tumor type, grade, mitotic count, ER and HER2 status, and tumor infiltrating lymphocyte involvement. The Tanzanian subjects were younger and had higher stage tumors than the subjects in either American group. Breast cancers in the Tanzanian and black American groups were more likely to be high grade (p=0.008), to have a high mitotic rate (p<0.0001), and to be ER-negative (p<0.001) than the tumors in the white American group. Higher levels of tumor infiltrating lymphocyte involvement were seen among Tanzanian and black American subjects compared to white American subjects (p=0.0001). Among all subjects, tumor infiltrating lymphocyte levels were higher in tumors with a high mitotic rate. Among Tanzanian and black American subjects, tumor infiltrating lymphocyte levels were higher in ER-negative tumors. These findings have implications for treatment priorities for breast cancer in Tanzania and other Sub-Saharan African countries. ... [Read More]

  6. d

    [MI] Rapid Cancer Registration Data

    • digital.nhs.uk
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). [MI] Rapid Cancer Registration Data [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/mi-rapid-cancer-registration-data
    Explore at:
    Dataset updated
    May 29, 2025
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Rapid Cancer Registration Data (RCRD) provides a quick, indicative source of cancer data. It is provided to support the planning and provision of cancer services. The data is based on a rapid processing of cancer registration data sources, in particular on Cancer Outcomes and Services Dataset (COSD) information. In comparison, National Cancer Registration Data (NCRD) relies on additional data sources, enhanced follow-up with trusts and expert processing by cancer registration officers. The Rapid Cancer Registration Data (RCRD) may be useful for service improvement projects including healthcare planning and prioritisation. However, it is poorly suited for epidemiological research due to limitations in the data quality and completeness.

  7. b

    Mortality rate from oral cancer, all ages - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mortality rate from oral cancer, all ages - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/mortality-rate-from-oral-cancer-all-ages-wmca/
    Explore at:
    csv, geojson, json, excelAvailable download formats
    Dataset updated
    Jun 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)

  8. Cancer data of United States of America

    • kaggle.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanisha1604 (2024). Cancer data of United States of America [Dataset]. https://www.kaggle.com/datasets/tanisha1604/cancer-data-of-united-states-of-america/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tanisha1604
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    United States
    Description

    About Dataset

    The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:

    File 1st

    • avganncount: Average number of cancer cases diagnosed annually.

    • avgdeathsperyear: Average number of deaths due to cancer per year.

    • target_deathrate: Target death rate due to cancer.

    • incidencerate: Incidence rate of cancer.

    • medincome: Median income in the region.

    • popest2015: Estimated population in 2015.

    • povertypercent: Percentage of population below the poverty line.

    • studypercap: Per capita number of cancer-related clinical trials conducted.

    • binnedinc: Binned median income.

    • medianage: Median age in the region.

    • pctprivatecoveragealone: Percentage of population covered by private health insurance alone.

    • pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.

    • pctpubliccoverage: Percentage of population covered by public health insurance.

    • pctpubliccoveragealone: Percentage of population covered by public health insurance only.

    • pctwhite: Percentage of White population.

    • pctblack: Percentage of Black population.

    • pctasian: Percentage of Asian population.

    • pctotherrace: Percentage of population belonging to other races.

    • pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.

    File 2nd

    This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:

    • statefips: The FIPS code representing the state.

    • countyfips: The FIPS code representing the county or census area within the state.

    • avghouseholdsize: The average household size in the region.

    • geography: The geographical location, typically represented as the county or census area name followed by the state name.

    Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.

  9. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. RSNA Screening Mammography Breast Cancer Detection (RSNA-SMBC) Dataset

    • registry.opendata.aws
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Radiological Society of North America (https://www.rsna.org/) (2024). RSNA Screening Mammography Breast Cancer Detection (RSNA-SMBC) Dataset [Dataset]. https://registry.opendata.aws/rsna-screening-mammography-breast-cancer-detection/
    Explore at:
    Dataset updated
    Aug 1, 2024
    Dataset provided by
    Radiological Society of North America
    Description

    According to the WHO, breast cancer is the most commonly occurring cancer worldwide. In 2020 alone, there were 2.3 million new breast cancer diagnoses and 685,000 deaths. Yet breast cancer mortality in high-income countries has dropped by 40% since the 1980s when health authorities implemented regular mammography screening in age groups considered at risk. Early detection and treatment are critical to reducing cancer fatalities, and your machine learning skills could help streamline the process radiologists use to evaluate screening mammograms. Currently, early detection of breast cancer requires the expertise of highly-trained human observers, making screening mammography programs expensive to conduct. RSNA collected screening mammograms and supporting information from two sites, totaling just under 20,000 imaging studies.

  11. a

    Lung Cancer Mortality

    • egis-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +1more
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/lung-cancer-mortality
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  12. Veterans Affairs Central Cancer Registry (VACCR)

    • catalog.data.gov
    • datahub.va.gov
    • +3more
    Updated Apr 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2021). Veterans Affairs Central Cancer Registry (VACCR) [Dataset]. https://catalog.data.gov/dataset/veterans-affairs-central-cancer-registry-vaccr
    Explore at:
    Dataset updated
    Apr 25, 2021
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The Veterans Affairs Central Cancer Registry (VACCR) receives and stores information on cancer diagnosis and treatment constraints compiled and sent in by the local cancer registry staff at each of the 132 Veterans Affairs Medical Centers that diagnose and/or treat Veterans with cancer. The information sent is encoded to meet the site-specific requirements for registry inclusion as established by several oversight bodies, including the North American Association of Central Cancer Registries, the American College of Surgeons' Commission on Cancer, and the American Joint Commission on Cancer, among others. The information is obtained from a wide variety of medical record documents at the local medical center pertaining to each Veterans Health Administration (VHA) cancer patient. The information is then transmitted to the VACCR. Details collected include extensive demographics, cancer identification, extent of disease and staging, first course of treatment, and outcomes. Data extraction is available to researchers with VA approved Institutional Review Board studies, peer review, and Data Use Agreements.

  13. h

    A dataset of hospitalised patients with Sarcoma

    • web.dev.hdruk.cloud
    • healthdatagateway.org
    unknown
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). A dataset of hospitalised patients with Sarcoma [Dataset]. https://web.dev.hdruk.cloud/dataset/195
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background

    Sarcomas are uncommon cancers that can affect any part of the body. There are many different types of sarcoma and subtypes can be grouped into soft tissue or bone sarcomas. About 15 people are diagnosed every day in the UK. 3 in every 200 people with cancer in the UK have sarcoma.

    A highly granular dataset with a confirmed sarcoma event including hospital presentation, serial physiology, demography, treatment prescribed and administered, prescribed and administered drugs. The infographic includes data from 27/12/2004 to 31/12/2021 but data is available from the past 10 years+.

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.

    EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Scope: All hospitalised patients from 2004 onwards, curated to focus on Sarcoma. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to acute care process (timings, staff grades, specialty review, wards and triage). Along with presenting complaints, outpatients admissions, microbiology results, referrals, procedures, therapies, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations and others), and all blood results (urea, albumin, platelets, white blood cells and others). Includes all prescribed & administered treatments and all outcomes. Linked images are also available (radiographs, CT scans, MRI).

    Available supplementary data: Matched controls; ambulance, OMOP data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  14. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  15. d

    Data from: Fat, fibre and cancer risk in African Americans and rural...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jan 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen J. D. O’Keefe; Jia V. Li; Leo Lahti; Junhai Ou; Franck Carbonero; Mohammed Khaled; Joram M. Posma; James Kinross; Elaine Wahl; Elizabeth Ruder; Kishore Vipperla; Vasudevan Naidoo; Lungile Mtshali; Sebastian Tims; Philippe G. B. Puylaert; James DeLany; Alyssa Krasinskas; Ann C. Benefiel; Hatem O. Kaseb; Keith Newton; Jeremy K. Nicholson; Willem M. de Vos; H. Rex Gaskins; Erwin G. Zoetendal (2016). Fat, fibre and cancer risk in African Americans and rural Africans [Dataset]. http://doi.org/10.5061/dryad.1mn1n
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 23, 2016
    Dataset provided by
    Dryad
    Authors
    Stephen J. D. O’Keefe; Jia V. Li; Leo Lahti; Junhai Ou; Franck Carbonero; Mohammed Khaled; Joram M. Posma; James Kinross; Elaine Wahl; Elizabeth Ruder; Kishore Vipperla; Vasudevan Naidoo; Lungile Mtshali; Sebastian Tims; Philippe G. B. Puylaert; James DeLany; Alyssa Krasinskas; Ann C. Benefiel; Hatem O. Kaseb; Keith Newton; Jeremy K. Nicholson; Willem M. de Vos; H. Rex Gaskins; Erwin G. Zoetendal
    Time period covered
    2016
    Area covered
    Africa, USA, South Africa
    Description

    HITChip data matrixA csv file containing HITChip phylogenetic microarray data matrix for the study samples. The data provides the absolute HITChip phylogenetic microarray signal estimate for 130 genus-like groups, preprocessed as described in the main article.HITChip.csvMetadataCSV file containing the sample metadata in the HITChip data matrix. The variables are rounded or aggregated to ensure subject anonymity. 'NA' refers to missing values. The variable units and other information are as follows: - SampleID: unique sample identified corresponding to samples in the HITChip data matrix - subject: Subject identifier (some subjects have multiple time points) - bmi: Standard body-mass classification (underweight: <18.5; lean: 18.5-25; overweight: 25-30; obese: 30-35; severe obese: 35-40; morbid obese 40-45; superobese >45). - sex (male/female) - nationality: African American (AAM); Native African (AFR) - timepoint.group: Time point (1/2) within the group (ED/HE/DI) - ti...

  16. Lung Cancer

    • kaggle.com
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ms. Nancy Al Aswad (2022). Lung Cancer [Dataset]. https://www.kaggle.com/Datasets/Nancyalaswad90/Lung-Cancer/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 15, 2022
    Dataset provided by
    Kaggle
    Authors
    Ms. Nancy Al Aswad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    What is Lung Cancer Dataset?

    The effectiveness of the cancer prediction system helps people to know their cancer risk at a low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system.

    .

    https://user-images.githubusercontent.com/36210723/182395183-ef7519e3-9c18-47ac-b7a6-a00e234f3949.png" alt="2022-08-02_170741">

    .

    Acknowledgments

    When we use this dataset in our research, we credit the authors as :

    • License : CC BY 4.0.

    • Hong, Z.Q. and Yang, J.Y. "Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane", Pattern Recognition, Vol. 24, No. 4, pp. 317-324, 1991 and it is published t to reuse in google research dataset

    The main idea for uploading this dataset is to practice data analysis with my students, as I am working in college and want my student to train our studying ideas in a big dataset, It may be not up to date and I mention the collecting years, but it is a good resource of data to practice

  17. f

    Table_4_Racial Disparities and Sex Differences in Early- and Late-Onset...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jessica L. Petrick; Lauren E. Barber; Shaneda Warren Andersen; Andrea A. Florio; Julie R. Palmer; Lynn Rosenberg (2023). Table_4_Racial Disparities and Sex Differences in Early- and Late-Onset Colorectal Cancer Incidence, 2001–2018.xlsx [Dataset]. http://doi.org/10.3389/fonc.2021.734998.s009
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    Frontiers
    Authors
    Jessica L. Petrick; Lauren E. Barber; Shaneda Warren Andersen; Andrea A. Florio; Julie R. Palmer; Lynn Rosenberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundColorectal cancer (CRC) incidence rates have increased in younger individuals worldwide. We examined the most recent early- and late-onset CRC rates for the US.MethodsAge-standardized incidence rates (ASIR, per 100,000) of CRC were calculated using the US Cancer Statistics Database’s high-quality population-based cancer registry data from the entire US population. Results were cross-classified by age (20-49 [early-onset] and 50-74 years [late-onset]), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, American Indian/Alaskan Native, Asian/Pacific Islander), sex, anatomic location (proximal, distal, rectal), and histology (adenocarcinoma, neuroendocrine).ResultsDuring 2001 through 2018, early-onset CRC rates significantly increased among American Indians/Alaskan Natives, Hispanics, and Whites. Compared to Whites, early-onset CRC rates are now 21% higher in American Indians/Alaskan Natives and 6% higher in Blacks. Rates of early-onset colorectal neuroendocrine tumors have increased in Whites, Blacks, and Hispanics; early-onset colorectal neuroendocrine tumor rates are 2-times higher in Blacks compared to Whites. Late-onset colorectal adenocarcinoma rates are decreasing, while late-onset colorectal neuroendocrine tumor rates are increasing, in all racial/ethnic groups. Late-onset CRC rates remain 29% higher in Blacks and 15% higher in American Indians/Alaskan Natives compared to Whites. Overall, CRC incidence was higher in men than women, but incidence of early-onset distal colon cancer was higher in women.ConclusionsThe early-onset CRC disparity between Blacks and Whites has decreased, due to increasing rates in Whites—rates in Blacks have remained stable. However, rates of colorectal neuroendocrine tumors are increasing in Blacks. Blacks and American Indians/Alaskan Natives have the highest rates of both early- and late-onset CRC.ImpactOngoing prevention efforts must ensure access to and uptake of CRC screening for Blacks and American Indians/Alaskan Natives.

  18. d

    AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons...

    • data.gov.au
    ogc:wfs, wms
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons Incidence (SA3) 2006-2010 [Dataset]. https://data.gov.au/dataset/ds-aurin-aurin%3Adatasource-AU_Govt_AIHW-UoM_AURIN_DB_aihw_cimar_incidence_persons_sa3_2006_10
    Explore at:
    wms, ogc:wfsAvailable download formats
    Description

    This dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined and the 5 top cancer groupings (breast - female only, colorectal, lung, melanoma of the skin …Show full descriptionThis dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined and the 5 top cancer groupings (breast - female only, colorectal, lung, melanoma of the skin and prostate) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to Statistical Area Level 3 (SA3) from the 2011 Australian Statistical Geography Standard (ASGS). Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD). For further information about this dataset, please visit: Australian Institute of Health and Welfare - Cancer Incidence and Mortality Across Regions (CIMAR) books. Australian Cancer Database 2012 Data Quality Statement. Please note: AURIN has spatially enabled the original data. Due to changes in geographic classifications over time, long-term trends are not available. Values assigned to "n.p." in the original data have been removed from the data. The Australian and jurisdictional totals include people who could not be assigned a SA3. The number of people who could not be assigned a SA3 is less than 1% of the total. The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory). The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries. The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards. Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD. Copyright attribution: Government of the Commonwealth of Australia - Australian Institute of Health and Welfare, (2016): ; accessed from AURIN on 12/3/2020. Licence type: Creative Commons Attribution 3.0 Australia (CC BY 3.0 AU)

  19. c

    National Lung Screening Trial

    • cancerimagingarchive.net
    dicom, docx, n/a +2
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2021). National Lung Screening Trial [Dataset]. http://doi.org/10.7937/TCIA.HMQ8-J677
    Explore at:
    docx, svs, dicom, n/a, sas, zip, and docAvailable download formats
    Dataset updated
    Sep 24, 2021
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Sep 24, 2021
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    https://www.cancerimagingarchive.net/wp-content/uploads/nctn-logo-300x108.png" alt="" width="300" height="108" />

    Demographic Summary of Available Imaging

    CharacteristicValue (N = 26254)
    Age (years)Mean ± SD: 61.4± 5
    Median (IQR): 60 (57-65)
    Range: 43-75
    SexMale: 15512 (59%)
    Female: 10742 (41%)
    Race

    White: 23969 (91.3%)
    Black: 1135 (4.3%)
    Asian: 547 (2.1%)
    American Indian/Alaska Native: 88 (0.3%)
    Native Hawaiian/Other Pacific Islander: 87 (0.3%)
    Unknown: 428 (1.6%)

    Ethnicity

    Not Available

    Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.

    Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.

    Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).

    Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).

    Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)

  20. r

    AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons...

    • researchdata.edu.au
    null
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of the Commonwealth of Australia - Australian Institute of Health and Welfare (2023). AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons Incidence (PHN) 2006-2010 [Dataset]. https://researchdata.edu.au/aihw-cancer-incidence-2006-2010/2738862
    Explore at:
    nullAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Australian Urban Research Infrastructure Network (AURIN)
    Authors
    Government of the Commonwealth of Australia - Australian Institute of Health and Welfare
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This dataset presents the footprint of cancer incidence statistics in Australia for all cancers combined and the 6 top cancer groupings (colorectal, leukaemia, lung, lymphoma, melanoma of the skin and pancreas) and their respective ICD-10 codes. The data spans the years 2006-2010 and is aggregated to 2015 Department of Health Primary Health Network (PHN) areas, based on the 2011 Australian Statistical Geography Standard (ASGS).

    Incidence data refer to the number of new cases of cancer diagnosed in a given time period. It does not refer to the number of people newly diagnosed (because one person can be diagnosed with more than one cancer in a year). Cancer incidence data come from the Australian Institute of Health and Welfare (AIHW) 2012 Australian Cancer Database (ACD).

    For further information about this dataset, please visit:

    Please note:

    • AURIN has spatially enabled the original data using the Department of Health - PHN Areas.

    • Due to changes in geographic classifications over time, long-term trends are not available.

    • Values assigned to "n.p." in the original data have been removed from the data.

    • The Australian and jurisdictional totals include people who could not be assigned a PHN. The number of people who could not be assigned a PHN is less than 1% of the total.

    • The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).

    • The ACD records all primary cancers except for basal and squamous cell carcinomas of the skin (BCCs and SCCs). These cancers are not notifiable diseases and are not collected by the state and territory cancer registries.

    • The diseases coded to ICD-10 codes D45-D46, D47.1 and D47.3-D47.5, which cover most of the myelodysplastic and myeloproliferative cancers, were not considered cancer at the time the ICD-10 was first published and were not routinely registered by all Australian cancer registries. The ACD contains all cases of these cancers which were diagnosed from 1982 onwards and which have been registered but the collection is not considered complete until 2003 onwards.

    • Note that the incidence data presented are for 2006-2010 because 2011 and 2012 data for NSW and ACT were not able to be provided for the 2012 ACD.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
Organization logoOrganization logo

CDC WONDER: Cancer Statistics

Explore at:
Dataset updated
Feb 22, 2025
Description

The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

Search
Clear search
Close search
Google apps
Main menu