46 datasets found
  1. d

    Data from: Survey of Gun Owners in the United States, 1996

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Survey of Gun Owners in the United States, 1996 [Dataset]. https://catalog.data.gov/dataset/survey-of-gun-owners-in-the-united-states-1996-6028b
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    United States
    Description

    This study was undertaken to obtain information on the characteristics of gun ownership, gun-carrying practices, and weapons-related incidents in the United States -- specifically, gun use and other weapons used in self-defense against humans and animals. Data were gathered using a national random-digit-dial telephone survey. The respondents were comprised of 1,905 randomly-selected adults aged 18 and older living in the 50 United States. All interviews were completed between May 28 and July 2, 1996. The sample was designed to be a representative sample of households, not of individuals, so researchers did not interview more than one adult from each household. To start the interview, six qualifying questions were asked, dealing with (1) gun ownership, (2) gun-carrying practices, (3) gun display against the respondent, (4) gun use in self-defense against animals, (5) gun use in self-defense against people, and (6) other weapons used in self-defense. A "yes" response to a qualifying question led to a series of additional questions on the same topic as the qualifying question. Part 1, Survey Data, contains the coded data obtained during the interviews, and Part 2, Open-Ended-Verbatim Responses, consists of the answers to open-ended questions provided by the respondents. Information collected for Part 1 covers how many firearms were owned by household members, types of firearms owned (handguns, revolvers, pistols, fully automatic weapons, and assault weapons), whether the respondent personally owned a gun, reasons for owning a gun, type of gun carried, whether the gun was ever kept loaded, kept concealed, used for personal protection, or used for work, and whether the respondent had a permit to carry the gun. Additional questions focused on incidents in which a gun was displayed in a hostile manner against the respondent, including the number of times such an incident took place, the location of the event in which the gun was displayed against the respondent, whether the police were contacted, whether the individual displaying the gun was known to the respondent, whether the incident was a burglary, robbery, or other planned assault, and the number of shots fired during the incident. Variables concerning gun use by the respondent in self-defense against an animal include the number of times the respondent used a gun in this manner and whether the respondent was hunting at the time of the incident. Other variables in Part 1 deal with gun use in self-defense against people, such as the location of the event, if the other individual knew the respondent had a gun, the type of gun used, any injuries to the respondent or to the individual that required medical attention or hospitalization, whether the incident was reported to the police, whether there were any arrests, whether other weapons were used in self-defense, the type of other weapon used, location of the incident in which the other weapon was used, and whether the respondent was working as a police officer or security guard or was in the military at the time of the event. Demographic variables in Part 1 include the gender, race, age, household income, and type of community (city, suburb, or rural) in which the respondent lived. Open-ended questions asked during the interview comprise the variables in Part 2. Responses include descriptions of where the respondent was when he or she displayed a gun (in self-defense or otherwise), specific reasons why the respondent displayed a gun, how the other individual reacted when the respondent displayed the gun, how the individual knew the respondent had a gun, whether the police were contacted for specific self-defense events, and if not, why not.

  2. Gun ownership in the U.S. 1972-2024

    • statista.com
    Updated Jun 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Gun ownership in the U.S. 1972-2024 [Dataset]. https://www.statista.com/statistics/249740/percentage-of-households-in-the-united-states-owning-a-firearm/
    Explore at:
    Dataset updated
    Jun 14, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The share of American households owning at least one firearm has remained relatively steady since 1972, hovering between ** percent and ** percent. In 2024, about ** percent of U.S. households had at least one gun in their possession. Additional information on firearms in the United States Firearms command a higher degree of cultural significance in the United States than any other country in the world. Since the inclusion of the right to bear arms in the Second Amendment to the Constitution of the United States, firearms have held symbolic power beyond their already obvious material power. Despite many Americans being proud gun-owners, a large movement exists within the country in opposition to the freedom afforded to those in possession of these potentially deadly weapons. Those opposed to current gun regulation have sourced their anger from the large number of deaths due to firearms in the country, as well as the high frequency of gun violence apparent in comparison to other developed countries. Furthermore, the United States has fallen victim to a number of mass shootings in the last two decades, most of which have raised questions over the ease at which a person can obtain a firearm. Although this movement holds a significant position in the public political discourse of the United States, meaningful change regarding the legislation dictating the ownership of firearms has not occurred. Critics have pointed to the influence possessed by the National Rifle Association through their lobbying of public officials. The National Rifle Association also lobbies for the interests of firearm manufacturing in the United States, which has continued to rise since a fall in the early 2000s.

  3. US Gun deaths by County 1999-2019

    • kaggle.com
    zip
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Eltom (2022). US Gun deaths by County 1999-2019 [Dataset]. https://www.kaggle.com/datasets/ahmedeltom/us-gun-deaths-by-county-19992019/code
    Explore at:
    zip(345996 bytes)Available download formats
    Dataset updated
    Nov 21, 2022
    Authors
    Ahmed Eltom
    Area covered
    United States
    Description

    The dataset is sourced and edited from
    data.world

    Description is given as below:

    Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death with U.S. - Mexico Border Regions 1999-2019 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. U.S. - Mexico border counties has been demarcated as the 44 counties that are located within 100 kilometers (62 miles) defined under the 1983 La Paz Agreement. Accessed at http://wonder.cdc.gov/ucd-border.html on Nov 6, 2021 12:22:30 AM

    Query Parameters: Title: Gun Deaths by County MCD - ICD-10 Codes: W32 (Handgun discharge); W33 (Rifle, shotgun and larger firearm discharge); W34 (Discharge from other and unspecified firearms); X72 (Intentional self-harm by handgun discharge); X73 (Intentional self-harm by rifle, shotgun and larger firearm discharge); X74 (Intentional self-harm by other and unspecified firearm discharge); X93 (Assault by handgun discharge); X94 (Assault by rifle, shotgun and larger firearm discharge); X95 (Assault by other and unspecified firearm discharge); Y22 (Handgun discharge, undetermined intent); Y23 (Rifle, shotgun and larger firearm discharge, undetermined intent); Y24 (Other and unspecified firearm discharge, undetermined intent); Y35.0 (Legal intervention involving firearm discharge)

    Group By: Year; County Show Totals: True Show Zero Values: False Show Suppressed: False Standard Population: 2000 U.S. Std. Population Calculate Rates Per: 100,000 Rate Options: Default intercensal populations for years 2001-2009 (except Infant Age Groups)

    picture sourced from peterplit

  4. R

    People And Guns Dataset

    • universe.roboflow.com
    zip
    Updated Sep 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    College (2023). People And Guns Dataset [Dataset]. https://universe.roboflow.com/college-ebrse/people-and-guns-t4vva/model/7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 29, 2023
    Dataset authored and provided by
    College
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    People And Guns Bounding Boxes
    Description

    People And Guns

    ## Overview
    
    People And Guns is a dataset for object detection tasks - it contains People And Guns annotations for 738 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  5. d

    "Gotta Make Your Own Heaven": Guns, Safety, and the Edge of Adulthood in New...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). "Gotta Make Your Own Heaven": Guns, Safety, and the Edge of Adulthood in New York City, 2018-2019 [Dataset]. https://catalog.data.gov/dataset/gotta-make-your-own-heaven-guns-safety-and-the-edge-of-adulthood-in-new-york-city-2018-201-2a26e
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    New York
    Description

    This project investigated the experiences of New York City youth ages 16-24 who were at high risk for gun violence (e.g., carried a gun, been shot or shot at). Youth participants were recruited from three neighborhoods with historically high rates of gun violence when compared to the city as a whole--Brownsville (Brooklyn), Morrisania (Bronx), and East Harlem (Manhattan). This study explores the complex confluence of individual, situational, and environmental factors that influence youth gun acquisition and use. This study is part of a broader effort to build an evidence-based foundation for individual and community interventions, and policies that will more effectively support these young people and prevent youth gun violence. Through interviews with 330 youth, this study seeks to answer these questions: What are the reasons young people carry guns? How do young people talk about having and using guns? What are young people's social networks like, and what roles do guns play in thesenetworks? Interviews covered the following topics: neighborhood perceptions; perceptions of and experiences with the police, gangs, guns, and violence; substance use; criminal history; and demographics: race, gender, age, legal status, relationship status, living situation, location, number of children, drug use, and education.

  6. g

    National Firearm Survey, 2004

    • datasearch.gesis.org
    • icpsr.umich.edu
    v1
    Updated Aug 5, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miller, Matthew (2015). National Firearm Survey, 2004 [Dataset]. http://doi.org/10.3886/ICPSR29681.v1
    Explore at:
    v1Available download formats
    Dataset updated
    Aug 5, 2015
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Miller, Matthew
    Description

    This nationally representative, anonymous, household telephone survey was conducted to explore the distribution of privately owned firearms in the United States, as well as firearm acquisition, disposal, and storage in households with guns. The study updates an earlier (1994) study by Cook and Ludwig that examined household firearm ownership in the United States (Cook P.J., Ludwig J. Guns in America: Results of a comprehensive national survey of firearms ownership and use. Washington DC: Police Foundation 1997.) Other domains of the survey included (1) past year firearm use both by respondents with firearms in their households and those without (e.g., "In the past 12 months, have you handled any gun"); (2) guns and youth (e.g., "In the last 12 months, have you ever asked another parent whether their home contains guns?"); (3) awareness of and opinions regarding state and federal firearm laws (e.g., "To the best of your knowledge, does your state have a law that holds adults liable for misuse of their guns by children or minors"; "Do you favor or oppose the sale of military style firearms?"); (4) depression and suicide (e.g., "If the Golden Gate Bridge had a barrier to prevent suicide, about how many of the 1,000 jumpers (who have committed suicide by jumping off the bridge since 1937) do you think would have found some other way to kill themselves?") and (5) aggressive driving (e.g., "In the past 12 months, have you made obscene or rude gestures at another motorist"). The survey also included extensive demographic information about the respondent and his or her family. The demographic information that was collected includes respondents' sex, age, race, education level, household income, criminal arrest history, armed forces membership status, type of residential area (e.g., urban or rural), and political philosophy.

  7. FiveThirtyEight Poll Quiz Guns Dataset

    • kaggle.com
    zip
    Updated Apr 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Poll Quiz Guns Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-poll-quiz-guns-dataset
    Explore at:
    zip(2509 bytes)Available download formats
    Dataset updated
    Apr 26, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Poll Quiz - Guns

    This folder contains the data behind the quiz Do You Know Where America Stands On Guns?

    guns-polls.csv contains the list of polls about guns that we used in our quiz. All polls have been taken after February 14, 2018, the date of the school shooting in Parkland, Florida.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  8. Number and percentage of homicide victims, by type of firearm used to commit...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +2more
    Updated Jul 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2019). Number and percentage of homicide victims, by type of firearm used to commit the homicide, inactive [Dataset]. http://doi.org/10.25318/3510007201-eng
    Explore at:
    Dataset updated
    Jul 22, 2019
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and percentage of homicide victims, by type of firearm used to commit the homicide (total firearms; handgun; rifle or shotgun; fully automatic firearm; sawed-off rifle or shotgun; firearm-like weapons; other firearms, type unknown), Canada, 1974 to 2018.

  9. N

    Gun Barrel City, TX Age Group Population Dataset: A complete breakdown of...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Gun Barrel City, TX Age Group Population Dataset: A complete breakdown of Gun Barrel City age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/7067e40d-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gun Barrel City, Texas
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Gun Barrel City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Gun Barrel City. The dataset can be utilized to understand the population distribution of Gun Barrel City by age. For example, using this dataset, we can identify the largest age group in Gun Barrel City.

    Key observations

    The largest age group in Gun Barrel City, TX was for the group of age 60-64 years with a population of 734 (11.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in Gun Barrel City, TX was the 85+ years with a population of 153 (2.49%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Gun Barrel City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Gun Barrel City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gun Barrel City Population by Age. You can refer the same here

  10. Weapons - Gun Detection & Segmentation

    • kaggle.com
    zip
    Updated Oct 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unique Data (2023). Weapons - Gun Detection & Segmentation [Dataset]. https://www.kaggle.com/datasets/trainingdatapro/people-with-guns-segmentation-and-detection/discussion
    Explore at:
    zip(69653241 bytes)Available download formats
    Dataset updated
    Oct 3, 2023
    Authors
    Unique Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    People with Guns Segmentation & Object Detection dataset

    The dataset consists of photos depicting individuals holding guns. It specifically focuses on the segmentation of guns within these images and the detection of people holding guns.

    Each image in the dataset presents a different scenario, capturing individuals from various backgrounds, genders, and age groups in different poses while holding guns.

    đź’´ For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on our website to buy the dataset

    The dataset is an essential resource for the development and evaluation of computer vision models and algorithms in fields related to firearms recognition, security systems, law enforcement, and safety analysis.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2497edebcdd1b7c4bc5471262bf5bd16%2FFrame%2029.png?generation=1696334547549518&alt=media" alt="">

    OTHER DATASETS WITH SEGMENTATION:

    đź§© This is just an example of the data. Leave a request here to learn more

    Dataset structure

    • images - contains of original images with people holding guns
    • labels - includes visualized labeling created for the original images
    • annotations.xml - contains coordinates of the polygons and bounding boxes, created for the original photo

    Data Format

    Each image from images folder is accompanied by an XML-annotation in the annotations.xml file indicating the coordinates of the bounding boxes and polygons. For each point, the x and y coordinates are provided.

    Сlasses:

    • person: person, who holds the gun, detected with a bounding box,
    • gun: gun, labeled with a polygon

    Example of XML file structure

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F96bbe14c80f4b494f97136f8ffdbaa44%2Fcarbon.png?generation=1696335385101390&alt=media" alt="">

    People with Guns Segmentation & Detection might be made in accordance with your requirements.

    🚀 You can learn more about our high-quality unique datasets here

    keywords: body segmentation dataset, human segmentation dataset, human body segmentation, people images dataset, biometric data dataset, biometric dataset, object detection, public safety, gun detection dataset, weapon detection, pistols object detection, handgun, pistols in-hand, state firearm database, firearm safety, short guns, annotated gun, cropped gun chip, automatic weapon detection system, annotation, semantic segmentation, computer vision, deep learning, machine learning, image dataset, image classification, human images

  11. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Nov 29, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  12. H

    Replication Data for: Social Disruption, Gun Buying, and Anti-System Beliefs...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Lacombe; Matthew Simonson; Jon Green; James Druckman (2022). Replication Data for: Social Disruption, Gun Buying, and Anti-System Beliefs [Dataset]. http://doi.org/10.7910/DVN/YI3DA1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Matthew Lacombe; Matthew Simonson; Jon Green; James Druckman
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Gun ownership is a highly a consequential political behavior. It often signifies a belief about the inadequacy of state-provided security and leads to membership in a powerful political constituency. As a result, it is important to understand why people buy guns and how shifting purchasing patterns affect the composition of the broader gun owning community. We address these topics by exploring the dynamics of the gun-buying spike that took place during the COVID-19 pandemic, which was one of the largest in American history. We find that feelings of diffuse threat prompted many individuals to buy guns. Moreover, we show that new gun owners, even more than buyers who already owned guns, exhibit strong conspiracy and anti-system beliefs. These findings have substantial consequences for the subsequent population of gun owners and provide insight into how social disruptions can alter the nature of political groups.

  13. R

    Weapons And People 2 Dataset

    • universe.roboflow.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    tylerworkspace (2025). Weapons And People 2 Dataset [Dataset]. https://universe.roboflow.com/tylerworkspace/weapons-and-people-2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 25, 2025
    Dataset authored and provided by
    tylerworkspace
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Weapon People Fcfx Bounding Boxes
    Description

    Weapons And People 2

    ## Overview
    
    Weapons And People 2 is a dataset for object detection tasks - it contains Weapon People Fcfx annotations for 5,016 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  14. d

    Stolen Guns

    • datasets.ai
    • bloomington.data.socrata.com
    • +2more
    23, 40, 55, 8
    Updated May 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bloomington (2023). Stolen Guns [Dataset]. https://datasets.ai/datasets/stolen-guns-b43e8
    Explore at:
    55, 23, 40, 8Available download formats
    Dataset updated
    May 19, 2023
    Dataset authored and provided by
    City of Bloomington
    Description

    Information from Bloomington Police Department regarding guns reported stolen.

    Key code for Race:

    A- Asian/Pacific Island, Non-Hispanic B- African American, Non-Hispanic C- Hawaiian/Other Pacific Island, Hispanic H- Hawaiian/Other Pacific Island, Non-Hispanic I- Indian/Alaskan Native, Non-Hispanic K- African American, Hispanic L- Caucasian, Hispanic N- Indian/Alaskan Native, Hispanic P- Asian/Pacific Island, Hispanic S- Asian, Non-Hispanic T- Asian, Hispanic U- Unknown W- Caucasian, Non-Hispanic

    Key Code for Reading Districts:

    Example: LB519

    L for Law call or incident B stands for Bloomington 5 is the district or beat where incident occurred All numbers following represents a grid sector.

    Disclaimer: The Bloomington Police Department takes great effort in making open data as accurate as possible, but there is no avoiding the introduction of errors in this process, which relies on data provided by many people and that cannot always be verified. Information contained in this dataset may change over a period of time. The Bloomington Police Department is not responsible for any error or omission from this data, or for the use or interpretation of the results of any research conducted.

  15. cctv-weapon-dataset

    • kaggle.com
    • huggingface.co
    zip
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simuletic (2025). cctv-weapon-dataset [Dataset]. https://www.kaggle.com/datasets/simuletic/cctv-weapon-dataset
    Explore at:
    zip(209307362 bytes)Available download formats
    Dataset updated
    Oct 29, 2025
    Authors
    Simuletic
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Simuletic Weapon Detection Dataset

    Overview

    This is an open-source synthetic dataset for computer vision (CV) object detection tasks, focusing on people holding weapons in public areas viewed from CCTV camera perspectives. The dataset consists of high-quality, realistic synthetic images.

    Key features:

    Classes: "person" and "weapon" (e.g., guns, knives in various poses and scenarios). Annotations: Bounding boxes (rectangles) in YOLO format for easy integration with models like YOLOv8. Resolution: Mixed resolutions. Purpose: Designed for training and evaluating AI models in security, surveillance, and threat detection. Addresses data scarcity and privacy issues with synthetic alternatives. This dataset is a sample done by Simuletic. We are working on open sourced dataset to help with weapon and threat detection.

    For custom scenarios, larger datasets, or videos, visit https://simuletic.com

    Dataset Structure

    images/: Folder containing .jpg or .png files (e.g., image001.jpg). labels/: Folder with YOLO .txt files (one per image, e.g., image001.txt). Each line: class_id center_x center_y width height (normalized 0-1). annotations.csv (optional): A CSV summary with columns like image_name, class, x_min, y_min, x_max, y_max for quick reference. Example YOLO label line: 0 0.45 0.55 0.20 0.30 # person 1 0.60 0.70 0.10 0.15 # weapon text##

    Sample dataset.yaml (create in root): yamlpath: /path/to/dataset train: images val: images # Use same for small datasets names: 0: person 1: weapon

    For Hugging Face integration: See our repo on Hugging Face.

    Preprocess resolutions if needed (e.g., via OpenCV for resizing).

    Ethics and Limitations

    This is fully synthetic data—no real individuals or events are depicted. Intended for ethical use in research/security (e.g., improving detection models). Do not use for harmful purposes. Potential biases: Scenarios may not cover all real-world diversity; audit for fairness. For production, combine with real data and validate.

    License This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You are free to share and adapt it, provided you give appropriate credit to Simuletic. Citation If you use this dataset, please cite: text@dataset{simuletic_weapon_detection_2025, author = {Your Name / Simuletic Team}, title = {Simuletic Synthetic Weapon Detection Dataset}, year = {2025}, url = {https://github.com/yourusername/cctv-weapon-dataset} } Links

    Huggingface: https://huggingface.co/datasets/Simuletic/cctv-weapon-dataset Github: Links coming Feedback? Reach out via https://simuletic.com or issues here.

  16. w

    Dataset of books called The second : race and guns in a fatally unequal...

    • workwithdata.com
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called The second : race and guns in a fatally unequal America [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=The+second+%3A+race+and+guns+in+a+fatally+unequal+America
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 2 rows and is filtered where the book is The second : race and guns in a fatally unequal America. It features 7 columns including author, publication date, language, and book publisher.

  17. Data from: Modern Weapons Dataset

    • kaggle.com
    zip
    Updated Nov 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). Modern Weapons Dataset [Dataset]. https://www.kaggle.com/datasets/bhadramohit/modern-weapons-dataset
    Explore at:
    zip(15036 bytes)Available download formats
    Dataset updated
    Nov 10, 2024
    Authors
    Bhadra Mohit
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Dataset Overview:

    Contains information on 1,000 unique weapons, including fantasy and modern types. Suitable for game design, simulations, machine learning, and data analysis projects.

    Key Columns:

    WeaponID: Unique identifier for each weapon.

    WeaponType: Weapon classification, ranging from melee (e.g., swords, axes) to ranged and futuristic types (e.g., rifles, laser guns).

    Material: Primary construction material, influencing durability and performance (e.g., Steel, Obsidian, Graphene).

    Rarity: Rarity classification, from "Common" to "Divine," indicating uniqueness or value.

    AttackPower: Numeric value denoting damage potential.

    Durability: Score reflecting weapon durability under use.

    Range: Effective range in meters, relevant for ranged weapons.

    Weight: Weight in kilograms, affecting usability and maneuverability.

    Applications:

    Data Analysis:

    Explore relationships between material, type, and performance attributes.

    Machine Learning:

    Train models to predict weapon effectiveness, simulate scenarios, or classify items.

    Game Development:

    Useful for world-building, item balancing, and creating diverse inventories. Versatility:

    Enables users to create varied digital scenarios. Useful for developing balanced, engaging systems in creative and interactive environments.

  18. N

    Gun Plain Township, Michigan Age Group Population Dataset: A complete...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Gun Plain Township, Michigan Age Group Population Dataset: A complete breakdown of Gun Plain township age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/7067e71a-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gun Plain Township, Michigan
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Gun Plain township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Gun Plain township. The dataset can be utilized to understand the population distribution of Gun Plain township by age. For example, using this dataset, we can identify the largest age group in Gun Plain township.

    Key observations

    The largest age group in Gun Plain Township, Michigan was for the group of age 50-54 years with a population of 519 (8.48%), according to the 2021 American Community Survey. At the same time, the smallest age group in Gun Plain Township, Michigan was the 85+ years with a population of 45 (0.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Gun Plain township is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Gun Plain township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gun Plain township Population by Age. You can refer the same here

  19. N

    Gun Plain Township, Michigan Median Income by Age Groups Dataset: A...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Gun Plain Township, Michigan Median Income by Age Groups Dataset: A Comprehensive Breakdown of Gun Plain township Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e93805fd-f353-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gun Plain Township, Michigan
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Gun Plain township. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Gun Plain township. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in Gun Plain township, the median household income stands at $126,667 for householders within the 25 to 44 years age group, followed by $99,718 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $41,492.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gun Plain township median household income by age. You can refer the same here

  20. N

    Gun Barrel City, TX Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Gun Barrel City, TX Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/69195a30-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gun Barrel City, Texas
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Gun Barrel City by race. It includes the population of Gun Barrel City across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Gun Barrel City across relevant racial categories.

    Key observations

    The percent distribution of Gun Barrel City population by race (across all racial categories recognized by the U.S. Census Bureau): 96.86% are white, 0.65% are Black or African American, 0.47% are American Indian and Alaska Native, 1.28% are some other race and 0.73% are multiracial.

    https://i.neilsberg.com/ch/gun-barrel-city-tx-population-by-race.jpeg" alt="Gun Barrel City population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Gun Barrel City
    • Population: The population of the racial category (excluding ethnicity) in the Gun Barrel City is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Gun Barrel City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gun Barrel City Population by Race & Ethnicity. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institute of Justice (2025). Survey of Gun Owners in the United States, 1996 [Dataset]. https://catalog.data.gov/dataset/survey-of-gun-owners-in-the-united-states-1996-6028b

Data from: Survey of Gun Owners in the United States, 1996

Related Article
Explore at:
Dataset updated
Nov 14, 2025
Dataset provided by
National Institute of Justice
Area covered
United States
Description

This study was undertaken to obtain information on the characteristics of gun ownership, gun-carrying practices, and weapons-related incidents in the United States -- specifically, gun use and other weapons used in self-defense against humans and animals. Data were gathered using a national random-digit-dial telephone survey. The respondents were comprised of 1,905 randomly-selected adults aged 18 and older living in the 50 United States. All interviews were completed between May 28 and July 2, 1996. The sample was designed to be a representative sample of households, not of individuals, so researchers did not interview more than one adult from each household. To start the interview, six qualifying questions were asked, dealing with (1) gun ownership, (2) gun-carrying practices, (3) gun display against the respondent, (4) gun use in self-defense against animals, (5) gun use in self-defense against people, and (6) other weapons used in self-defense. A "yes" response to a qualifying question led to a series of additional questions on the same topic as the qualifying question. Part 1, Survey Data, contains the coded data obtained during the interviews, and Part 2, Open-Ended-Verbatim Responses, consists of the answers to open-ended questions provided by the respondents. Information collected for Part 1 covers how many firearms were owned by household members, types of firearms owned (handguns, revolvers, pistols, fully automatic weapons, and assault weapons), whether the respondent personally owned a gun, reasons for owning a gun, type of gun carried, whether the gun was ever kept loaded, kept concealed, used for personal protection, or used for work, and whether the respondent had a permit to carry the gun. Additional questions focused on incidents in which a gun was displayed in a hostile manner against the respondent, including the number of times such an incident took place, the location of the event in which the gun was displayed against the respondent, whether the police were contacted, whether the individual displaying the gun was known to the respondent, whether the incident was a burglary, robbery, or other planned assault, and the number of shots fired during the incident. Variables concerning gun use by the respondent in self-defense against an animal include the number of times the respondent used a gun in this manner and whether the respondent was hunting at the time of the incident. Other variables in Part 1 deal with gun use in self-defense against people, such as the location of the event, if the other individual knew the respondent had a gun, the type of gun used, any injuries to the respondent or to the individual that required medical attention or hospitalization, whether the incident was reported to the police, whether there were any arrests, whether other weapons were used in self-defense, the type of other weapon used, location of the incident in which the other weapon was used, and whether the respondent was working as a police officer or security guard or was in the military at the time of the event. Demographic variables in Part 1 include the gender, race, age, household income, and type of community (city, suburb, or rural) in which the respondent lived. Open-ended questions asked during the interview comprise the variables in Part 2. Responses include descriptions of where the respondent was when he or she displayed a gun (in self-defense or otherwise), specific reasons why the respondent displayed a gun, how the other individual reacted when the respondent displayed the gun, how the individual knew the respondent had a gun, whether the police were contacted for specific self-defense events, and if not, why not.

Search
Clear search
Close search
Google apps
Main menu