https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.
Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.
CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/covid-data-tracker/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Archived Data Notes:
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths.
November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.
January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.
January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.
February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.
February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.
February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.
February 16, 2023: Due to a reporting cadence change, Maine’s
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Gender * The City collects information on gender identity using these guidelines.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.
New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.
This data may not be immediately available for recently reported cases. Data updates as more information becomes available.
To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.
E. CHANGE LOG
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
As of July 2nd, 2024 the COVID-19 Deaths by Population Characteristics Over Time dataset has been retired. This dataset is archived and will no longer update. We will be publishing a cumulative deaths by population characteristics dataset that will update moving forward.
A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.
Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.
B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.
Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates
Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.
To protect resident privacy, we summarize COVID-19 data by only one characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.
Data notes on each population characteristic type is listed below.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.
Gender * The City collects information on gender identity using these guidelines.
C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.
Dataset will not update on the business day following any federal holiday.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.
New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
This data may not be immediately available for more recent deaths. Data updates as more information becomes available.
To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.
E. CHANGE LOG
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.
On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.
Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.
Dataset is cumulative and covers cases going back to 3/2/2020 when testing began.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling basis.
E. CHANGE LOG
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 30 September 2021.
--- Dataset description provided by original source is as follows ---
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive
, death
and totalTestResults
from the API for, respectively, Infected
, Deaths
and Tested
in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset comprises of 10 JSON files, each containing geographic metadata and a sentiment score collected from tweets between March 20, 2020 and December 1, 2020 pertaining to the COVID-19 global pandemic for ten of the most populous cities in the United States and Canada.
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents. Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date). COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date. Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are spec
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.
The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.
When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:
• The person was not asked about their race and ethnicity.
• The person was asked, but refused to answer.
• The person answered, but the testing provider did not include the person's answers in the reports.
• The testing provider reported the person's answers in a format that could not be used by the health department.
For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”
B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."
The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”
If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value is reported as “Unknown” on their first test and then on a subsequent test they report “Asian;” "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" or "White”, then this subsequent reported race/ethnicity will overwrite the previous recording of “Unknown”. If a person has only ever selected “Unknown” as their race/ethnicity, then it will be recorded as “Unknown.” This change provides more specific and actionable data on who is tested in San Francisco.
The second exception is if a person ever marks “Hispanic or Latino/a, all races” for race/ethnicity then this choice will always overwrite any previous or future response. This is because it is an overarching category that can include any and all other races and is mutually exclusive with the other responses.
A person's race/ethnicity will be recorded as “Multi-racial” if they select two or more values among the following choices: “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other.” If a person selects a combination of two or more race/ethnicity answers that includes “Hispanic or Latino/a, all races” then they will still be recorded as “Hispanic or Latino/a, all races”—not as “Multi-racial.”
C. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.
D. UPDATE PROCESS Updates automatically at 5:00AM Pacific Time each day. Redundant runs are scheduled at 7:00AM and 9:00AM in case of pipeline failure.
E. HOW TO USE THIS DATASET San Francisco population estimates for race/ethnicity can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24, 2020 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a user can analyze this data by sorting or filtering by the "specimen_collection_date" field.
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.
Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ethnicity by the total number of residents who identify as that race/ethnicity (according to the 2016-2020 American Community Survey (ACS) population estimate), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.
Read more about how this data is updated and validated daily: https://sf.gov/information/covid-19-data-questions
F. CHANGE LOG
Regarding all Vaccination Data The date of Last Update is 4/21/2023. Additionally on 4/27/2023 several COVID-19 datasets were retired and no longer included in public COVID-19 data dissemination. See this link for more information https://imap.maryland.gov/pages/covid-data Summary The cumulative number of COVID-19 vaccinations by race: American Indian or Alaska Native; Asian; Black or African American; White; Native Hawaiian or Other Pacific Islander; Other; Unknown Description MD COVID-19 - Vaccinations by Race Distribution data layer is a collection of COVID-19 vaccinations that have been reported each day into ImmuNet. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Coronavirus API http://coronavirusapi.com/states.csv
http://coronavirusapi.com/states.csv
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States recorded 103436829 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 1127152 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Cases.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
The COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.
The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.
The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.
*Zip Code data has been crosswalked to Census Tract using HUD methodology
Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:
Indicator
ACS Table/Years
Numerator
Denominator
Non-US Citizen
B05001, 2019-2023
b05001_006e
b05001_001e
Below 200% FPL
S1701, 2019-2023
s1701_c01_042e
s1701_c01_001e
Overcrowded Housing Units
B25014, 2019-2023
b25014_006e + b25014_007e + b25014_012e + b25014_013e
b25014_001e
Essential Workers
S2401, 2019-2023
s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e
s2401_c01_001
Seniors 75+ in Poverty
B17020, 2019-2023
b17020_008e + b17020_009e
b17020_008e + b17020_009e + b17020_016e + b17020_017e
Uninsured
S2701, 2019-2023
s2701_c05_001e
NA, rate published in source table
Single-Parent Households
S1101, 2019-2023
s1101_c03_005e + s1101_c04_005e
s1101_c01_001e
Unemployment
S2301, 2019-2023
s2301_c04_001e
NA, rate published in source table
The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:
Indicator
Years
Definition
Denominator
Asthma Hospitalizations
2017-2019
All ICD 10 codes under J45 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Gun Injuries
2017-2019
Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Heart Disease Hospitalizations
2017-2019
ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Diabetes (Type 2) Hospitalizations
2017-2019
All ICD 10 codes under E11 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
For more information about this dataset, please contact egis@isd.lacounty.gov.
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables.
Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021.
This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data.
This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score.
This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4.
The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.
The American Trends Panel (ATP), created by "https://www.pewresearch.org/" Target="_blank">Pew Research Center, is a nationally representative panel of randomly selected U.S. adults. Panelists participate via self-administered web surveys. Panelists who do not have internet access at home are provided with a tablet and wireless internet connection. Interviews are conducted in both English and Spanish. The panel is being managed by "https://www.ipsos.com/en" Target="_blank">Ipsos.
The "https://www.pewresearch.org/science/dataset/american-trends-panel-wave-114/" Target="_blank">ATP Wave 114 was conducted from September 13 to 18, 2022. A total of 10,588 panelists responded out of 11,687 who were sampled for a response rate of 91 percent. The cumulative response rate accounting for nonresponse to the recruitment surveys and attrition is 3 percent. The break-off rate among panelists who logged on to the survey and completed at least one item is 1 percent. The margin of sampling error for the full sample of 10,588 respondents is plus or minus 1.5 percentage points.
The ATPW114 addresses topics of COVID-19, scientists and religion.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.