67 datasets found
  1. Amount of states visited by U.S. citizens 2022

    • statista.com
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Amount of states visited by U.S. citizens 2022 [Dataset]. https://www.statista.com/statistics/1378573/states-visited-citizens-us/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 25, 2022 - Jul 27, 2022
    Area covered
    United States
    Description

    During a 2022 survey, adults in the United States were asked how many states they had visited. In response, nine percent of survey participants answered that they had visited between two and five states, with the source also including the respondents' home states as a state visited. In contrast, two percent of respondents claimed to have visited all 50 U.S. states, with some also having been to Washington D.C.

  2. Most visited states in the U.S. 2022

    • statista.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most visited states in the U.S. 2022 [Dataset]. https://www.statista.com/statistics/1378808/most-visited-states-us/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 25, 2022 - Jul 27, 2022
    Area covered
    United States
    Description

    When surveyed in 2022, it was found that Florida and New York were the two most visited states by adults in the United States, having been visited by 61 and 54 percent of respondents, respectively. Although it is not a state, the federal district of Washington, D.C. proved a popular travel destination for respondents, 49 percent of whom claimed to have visited the U.S. capital. In contrast, only 13 percent of respondents said they had visited Alaska, making it the least-visited state.

    What is the most visited national park in the U.S.?

    With approximately 15.7 million recreational visits in 2022, the Blue Ridge Parkway was the most visited National Park Service park in the United States. The park extends 469 miles through Virginia and North Carolina, connecting the Shenandoah National Park to the Great Smoky Mountains National Park. Meanwhile, the number of recreational visitors to Yellowstone National Park in 2022 was 3.29 million, down from the previous year’s total of 4.86 million.

    How many domestic leisure trips do Americans take?

    The number of domestic leisure trips in the U.S. amounted to 1.88 billion in 2022. As estimated, domestic leisure travels in the U.S. dropped to 1.4 billion in 2020. This was due to travel restrictions related to the coronavirus (COVID-19) pandemic. It is forecast that the number of leisure trips will recover gradually during the following years, reaching two billion by 2026. The number of business trips, by comparison, is forecast to reach 480 million that same year.

  3. U

    United States US: International Tourism: Number of Arrivals

    • ceicdata.com
    Updated Dec 15, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States US: International Tourism: Number of Arrivals [Dataset]. https://www.ceicdata.com/en/united-states/tourism-statistics/us-international-tourism-number-of-arrivals
    Explore at:
    Dataset updated
    Dec 15, 2010
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Tourism Statistics
    Description

    United States US: International Tourism: Number of Arrivals data was reported at 75,608,000.000 Person in 2016. This records a decrease from the previous number of 77,465,000.000 Person for 2015. United States US: International Tourism: Number of Arrivals data is updated yearly, averaging 51,107,500.000 Person from Dec 1995 (Median) to 2016, with 22 observations. The data reached an all-time high of 77,465,000.000 Person in 2015 and a record low of 41,218,000.000 Person in 2003. United States US: International Tourism: Number of Arrivals data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Tourism Statistics. International inbound tourists (overnight visitors) are the number of tourists who travel to a country other than that in which they have their usual residence, but outside their usual environment, for a period not exceeding 12 months and whose main purpose in visiting is other than an activity remunerated from within the country visited. When data on number of tourists are not available, the number of visitors, which includes tourists, same-day visitors, cruise passengers, and crew members, is shown instead. Sources and collection methods for arrivals differ across countries. In some cases data are from border statistics (police, immigration, and the like) and supplemented by border surveys. In other cases data are from tourism accommodation establishments. For some countries number of arrivals is limited to arrivals by air and for others to arrivals staying in hotels. Some countries include arrivals of nationals residing abroad while others do not. Caution should thus be used in comparing arrivals across countries. The data on inbound tourists refer to the number of arrivals, not to the number of people traveling. Thus a person who makes several trips to a country during a given period is counted each time as a new arrival.; ; World Tourism Organization, Yearbook of Tourism Statistics, Compendium of Tourism Statistics and data files.; Gap-filled total;

  4. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. Travel by Canadians to the United States, top 15 states visited

    • www150.statcan.gc.ca
    • gimi9.com
    • +4more
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2016). Travel by Canadians to the United States, top 15 states visited [Dataset]. http://doi.org/10.25318/2410003901-eng
    Explore at:
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table contains 45 series, with data for years 2014 - 2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada) State visited (15 items: Florida; New York; Washington; California; ...) Travel characteristics (3 items: Visits; Nights; Spending in country).

  6. d

    Protected Areas Database of the United States (PAD-US) 2.1

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 2.1 [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-2-1
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 3.0 https://doi.org/10.5066/P9Q9LQ4B. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using over twenty-five attributes and five feature classes representing the U.S. protected areas network in separate feature classes: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. Five additional feature classes include various combinations of the primary layers (for example, Combined_Fee_Easement) to support data management, queries, web mapping services, and analyses. This PAD-US Version 2.1 dataset includes a variety of updates and new data from the previous Version 2.0 dataset (USGS, 2018 https://doi.org/10.5066/P955KPLE ), achieving the primary goal to "Complete the PAD-US Inventory by 2020" (https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-vision) by addressing known data gaps with newly available data. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in PAD-US, along with continued improvements and regular maintenance of the federal theme. Completing the PAD-US Inventory: 1) Integration of over 75,000 city parks in all 50 States (and the District of Columbia) from The Trust for Public Land's (TPL) ParkServe data development initiative (https://parkserve.tpl.org/) added nearly 2.7 million acres of protected area and significantly reduced the primary known data gap in previous PAD-US versions (local government lands). 2) First-time integration of the Census American Indian/Alaskan Native Areas (AIA) dataset (https://www2.census.gov/geo/tiger/TIGER2019/AIANNH) representing the boundaries for federally recognized American Indian reservations and off-reservation trust lands across the nation (as of January 1, 2020, as reported by the federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey) addressed another major PAD-US data gap. 3) Aggregation of nearly 5,000 protected areas owned by local land trusts in 13 states, aggregated by Ducks Unlimited through data calls for easements to update the National Conservation Easement Database (https://www.conservationeasement.us/), increased PAD-US protected areas by over 350,000 acres. Maintaining regular Federal updates: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/); 2) Complete National Marine Protected Areas (MPA) update: from the National Oceanic and Atmospheric Administration (NOAA) MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA; Other changes: 1) PAD-US field name change - The "Public Access" field name changed from 'Access' to 'Pub_Access' to avoid unintended scripting errors associated with the script command 'access'. 2) Additional field - The "Feature Class" (FeatClass) field was added to all layers within PAD-US 2.1 (only included in the "Combined" layers of PAD-US 2.0 to describe which feature class data originated from). 3) Categorical GAP Status Code default changes - National Monuments are categorically assigned GAP Status Code = 2 (previously GAP 3), in the absence of other information, to better represent biodiversity protection restrictions associated with the designation. The Bureau of Land Management Areas of Environmental Concern (ACECs) are categorically assigned GAP Status Code = 3 (previously GAP 2) as the areas are administratively protected, not permanent. More information is available upon request. 4) Agency Name (FWS) geodatabase domain description changed to U.S. Fish and Wildlife Service (previously U.S. Fish & Wildlife Service). 5) Select areas in the provisional PAD-US 2.1 Proclamation feature class were removed following a consultation with the data-steward (Census Bureau). Tribal designated statistical areas are purely a geographic area for providing Census statistics with no land base. Most affected areas are relatively small; however, 4,341,120 acres and 37 records were removed in total. Contact Mason Croft (masoncroft@boisestate) for more information about how to identify these records. For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the Online PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .

  7. g

    Report on visit to United States of America

    • ecat.ga.gov.au
    • datadiscoverystudio.org
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Report on visit to United States of America [Dataset]. https://ecat.ga.gov.au/geonetwork/eng/search?keyword=US
    Explore at:
    Dataset updated
    Aug 7, 2024
    Area covered
    United States
    Description

    The object of my trip to the United States of America was to discuss problems of micropalaeontology with various authorities in that country, to visit the palaeontological laboratories of the United States Geological Survey and National Museum, State Universities, Museums and laboratories of oil companies and to enquire into the latest techniques used in oil-field laboratories. I was also to attend the joint Annual Convention of the American Association of Petroleum Geologists, Society of Economic Palaeontologists and Mineralogists and Society of Exploratory Geophysicists at St. Louis. This report gives an account of the institutions visited by the author and the principal results of the visit.

  8. Travellers to Canada from the United States by state of origin, top 15...

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Jan 19, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2016). Travellers to Canada from the United States by state of origin, top 15 states of origin [Dataset]. http://doi.org/10.25318/2410004001-eng
    Explore at:
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table contains 45 series, with data for years 2014 - 2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada) State of origin (15 items: New York; Washington; Michigan; California; ...) Traveller characteristics (3 items: Trips; Nights; Spending in Canada).

  9. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  10. Data from: U.S. Census Block Groups

    • giscommons-countyplanning.opendata.arcgis.com
    • geospatial.gis.cuyahogacounty.gov
    • +5more
    Updated Jun 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Block Groups [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/fedmaps::u-s-census-block-groups
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census Block GroupsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census block groups in the 50 states, the District of Columbia, and Puerto Rico. Per the USCB, "Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas".Block Group 2 - Census Tract 010400 (Santa Fe, NM area)Data version: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Block Groups) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 70 (Series Information for Block Group State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Block Groups - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocks?For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  11. United States: number of internet users 2015-2024

    • statista.com
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: number of internet users 2015-2024 [Dataset]. https://www.statista.com/statistics/276445/number-of-internet-users-in-the-united-states/
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of January 2024, around 331.1 million people in the United States accessed the internet, making it one of the largest online markets worldwide. The country currently ranks third after China and India by the online audience size. Overview of internet usage in the United States The digital population in the United States has constantly increased in recent years. Among the most common reasons is the growing accessibility of broadband internet. A big part of the country's digital audience accesses the web via mobile phones. In 2024, the country saw an estimated 97.1 percent mobile internet user penetration. According to a 2024 survey, over 51 percent of U.S. women and 43 percent of men said it is important to them to have mobile internet access anywhere, at any time. Another 41 percent of respondents could not imagine their everyday life without the internet. Google and YouTube are the most visited websites in the country, while music, food, and drinks were the most discussed online topics. Internet usage demographics in the United States While some users can no longer imagine their life without the internet, others do not use it at all. According to 2021 data, 25 percent of U.S. adults 65 and older reported not using the internet. Despite this, online usage was strong across other age groups, especially young adults aged 18 to 49. This age group also reported the highest percentage of smartphone usage in the country as of 2023. Due to a persistent lack of connectivity in rural areas, more online users were based in urban areas of the U.S. than in the countryside.

  12. A

    American Travel Survey (ATS) 1995 [datasets]

    • data.amerigeoss.org
    • data.bts.gov
    • +3more
    zip
    Updated Apr 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). American Travel Survey (ATS) 1995 [datasets] [Dataset]. https://data.amerigeoss.org/sv/dataset/american-travel-survey-ats-1995-datasets
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 10, 2019
    Dataset provided by
    United States
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    The 1995 American Travel Survey (ATS) was conducted by the Bureau of Transportation Statistics (BTS) to obtain information about the long-distance travel of persons living in the United States. The survey collected quarterly information related to the characteristics of persons, households, and trips of 100 miles or more for approximately 80,000 American households. The ATS data provide detailed information on state-to-state travel as well as travel to and from metropolitan areas by mode of transportation. Data are also available for subgroups defined in terms of characteristics related to travel, such as trip purpose, age, family type, income, and a variety of related characteristics. The data can be analyzed at the regional, state, metropolitan area, and county level. NOTE: In 2001, the National Household Travel Survey was carried out. This new survey is a combined Nationwide Personal Transportation Survey (NPTS) and ATS. Visit the National Household Travel Survey web site << https://nhts.ornl.gov/ >> for more details.

  13. American Time Use Survey (ATUS): Arts Activities, [United States], 2003-2023...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Mar 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of Labor Statistics (2025). American Time Use Survey (ATUS): Arts Activities, [United States], 2003-2023 [Dataset]. http://doi.org/10.3886/ICPSR36268.v8
    Explore at:
    ascii, stata, sas, delimited, r, spssAvailable download formats
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36268/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36268/terms

    Time period covered
    2003 - 2023
    Area covered
    United States
    Description

    The American Time Use Survey (ATUS) is the Nation's first federally administered, continuous survey on time use in the United States. This multi-year data collection contains information on the amount of time (in minutes) that people spent doing various activities on a given day, including the arts activities, in the years 2003 through 2023. Data collection for the ATUS began in January 2003. Sample cases for the survey are selected monthly, and interviews are conducted continuously throughout the year. In 2023, approximately 9,000 individuals were interviewed. Estimates are released annually. ATUS sample households are chosen from the households that completed their eighth (final) interview for the Current Population Survey (CPS), the nation's monthly household labor force survey. ATUS sample households are selected to ensure that estimates will be nationally representative. One individual age 15 or over is randomly chosen from each sampled household. This "designated person" is interviewed by telephone once about his or her activities on the day before the interview--the "diary day." The ATUS Activity Coding Lexicon is a 3-tiered classification system with 17 first-tier categories. Each of the first-tier categories has two additional levels of detail. Respondents' reported activities are assigned 6-digit activity codes based on this classification system. Additionally, the study provides demographic information--including sex, age, ethnicity, race, education, employment, and children in the household. IMPORTANT: The 2020 ATUS was greatly affected by the coronavirus (COVID-19) pandemic. Data collection was suspended in 2020 from mid-March to mid-May. ATUS data files for 2020 contain all ATUS data collected in 2020--both before and after data collection was suspended. For more information, please visit BLS's ATUS page. The weighting method was changed for 2020 to account for the suspension of data collection in early 2020 due to the COVID-19 pandemic. Respondents from 2020 will have missing values for the replicate weights on this data file. The Pandemic Replicate weights file for 2019-20 contains 160 replicate final weights for each ATUS final weight created using the 2020 weighting method. Chapter 7 of the ATUS User's Guide provides more information about the 2020 weighting method.

  14. Reddit users in the United States 2019-2028

    • statista.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Reddit users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.

  15. Twitter users in the United States 2019-2028

    • statista.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twitter users in the United States 2019-2028 [Dataset]. https://www.statista.com/topics/3196/social-media-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.

  16. ACS Travel Time To Work Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • hub.arcgis.com
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Travel Time To Work Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/a31b5c96d5c54b2eb216d8f3896e35fc
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows workers' place of residence by commute length. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of commuters whose commute is 90 minutes or more. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08303Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. ACS Internet Access by Education Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • gis-fema.hub.arcgis.com
    • +2more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  18. 2023 American Community Survey: B07004C | Geographical Mobility in the Past...

    • data.census.gov
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B07004C | Geographical Mobility in the Past Year (American Indian and Alaska Native Alone) for Current Residence in the United States (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?q=B07004C&g=500XX00US4809
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. ACS Median Household Income Variables - Boundaries

    • gis-fema.hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://gis-fema.hub.arcgis.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. ACS Housing Costs Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +8more
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Housing Costs Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/9c7647840d6540e4864d205bac505027
    Explore at:
    Dataset updated
    Dec 12, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows housing costs as a percentage of household income. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. This layer is symbolized to show the percent of renter households that spend 30.0% or more of their household income on gross rent (contract rent plus tenant-paid utilities). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25070, B25091 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Amount of states visited by U.S. citizens 2022 [Dataset]. https://www.statista.com/statistics/1378573/states-visited-citizens-us/
Organization logo

Amount of states visited by U.S. citizens 2022

Explore at:
Dataset updated
Nov 15, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 25, 2022 - Jul 27, 2022
Area covered
United States
Description

During a 2022 survey, adults in the United States were asked how many states they had visited. In response, nine percent of survey participants answered that they had visited between two and five states, with the source also including the respondents' home states as a state visited. In contrast, two percent of respondents claimed to have visited all 50 U.S. states, with some also having been to Washington D.C.

Search
Clear search
Close search
Google apps
Main menu