22 datasets found
  1. WHO Suicide Data

    • kaggle.com
    zip
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dhanushka Tharanga (2024). WHO Suicide Data [Dataset]. https://www.kaggle.com/datasets/dhanushkatharanga/who-suicide-data
    Explore at:
    zip(311347 bytes)Available download formats
    Dataset updated
    Jul 8, 2024
    Authors
    Dhanushka Tharanga
    Description

    Introduction Suicide is still one of the world's most important public health issues, with the World Health Organization (WHO) claiming that over 700,000 people die by suicide annually. Suicide is one of the main causes of death, with far-reaching consequences for people, families, and society. Understanding the global patterns and trends in suicide rates is critical for creating effective prevention methods and providing the required support to at-risk individuals. The purpose of this report is to visualize global data on suicides using the WHO dataset (who_suicide_statistics.csv). This dataset has statistics on the number of suicides in various countries, years, age categories, and sexes. By analyzing this data, it will guide us to learn about demographic and temporal patterns of suicide, show high-risk groups, and highlight regions facing significant challenges. The visualizations will employ various techniques such as graphs, charts, and maps to effectively convey the information and guide the viewer through the findings. Through these visualizations and insights, I suggested key points and recommendations needed to minimize suicide incidents in future. Description of the Dataset The dataset (who_suicide_statistics.csv) has extensive data on global suicide statistics collected by the World Health Organization. This dataset is an invaluable resource for analyzing the patterns and trends in suicide rates across countries, years, age groups, and genders. Below is a detailed description of the columns in the dataset and the kind of information each one provides. Columns in the Dataset • country: Description: The name of the country where the data was collected. Type: Categorical Example Values: 'United States', 'Japan', 'Germany' • year: Description: The year the data was recorded. Type: Numerical Example Values: 2000, 2005, 2010 - age: Description: The age group of the individuals whose suicide data is recorded. Type: Categorical Example Values: '15-24', '25-34', '35-44', '45-54', '55-64', '65-74', '75+' • sex: Description: The sex of the individuals whose suicide data is recorded. Type: Categorical Example Values: 'male', 'female' • suicide_no: Description: The number of suicide cases recorded for the specified country, year, age and sex. Type: Numerical Example Values: 15, 42, 108 • population: Description: The population of the specified age group and sex in the country for that year. Type: Numerical Example Values: 345633, 785042, 3356435 Additional Information • Suicide Rate Calculation: Using the suicide_no and population columns, we can calculate the suicide rate per 100,000 population, which normalizes the data and allows for fair comparisons across different countries and demographic groups. Formula: suicides_rate = (suicide_no / population) * 100000

  2. Death rates for suicide, by sex, race, Hispanic origin, and age: United...

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Death rates for suicide, by sex, race, Hispanic origin, and age: United States [Dataset]. https://catalog.data.gov/dataset/death-rates-for-suicide-by-sex-race-hispanic-origin-and-age-united-states-020c1
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Data on death rates for suicide, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System (NVSS); Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968; numerator data from NVSS annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.

  3. Global suicide data

    • kaggle.com
    zip
    Updated Dec 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    $@7#U (2017). Global suicide data [Dataset]. https://www.kaggle.com/sathutr/global-suicide-data
    Explore at:
    zip(137011 bytes)Available download formats
    Dataset updated
    Dec 23, 2017
    Authors
    $@7#U
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    As the tagline of ‘American Association of Suicidology’ says I strongly believe that suicide prevention is everyone’s business. The act of ending one’s own life stating the reasons to be depression, alcoholism or any other mental disorders for that matter is not a considerable idea keeping in mind that anything can be overcome with reliable help and lifestyle. We can choose to stand together in the face of a society which may often feel like a lonely and disconnected place, and we can choose to make a difference by making lives more livable for those who struggle to cope. Through this project, I am hoping to identify the trends of suicidal rates by country, gender, age and ethnicity. And relate the trends to the possible reasons that leads to the drastic decision, which might help us to curb the thought in the very beginning.

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Data on suicides is deficient for two reasons, first of all, there is a problem with the frequency and reliability of vital registration data in many countries – an issue that undermine the quality of mortality estimates in general, not just suicide. Secondly, there are problems with the accuracy of the official figures made available, since suicide registration is a complicated process involving several responsible authorities with medical and legal concerns. Moreover, the illegality of suicidal behavior in some countries contributes to under reporting and misclassification. I was lucky enough to obtain enough data from different reliable resources. I will be starting off the project with the most reliable datasets available for us on suicide.

    •World Health Organization (WHO) dataset which contains entity wise suicide rates, crude suicide rates per gender and country which are age standardized which has a geographical coverage of 198 countries. The time spanning from 1950-2011.

    •Samaritans statistics report 2017 including data for 2013-2015, in order to reduce the time, it takes to register deaths, the maximum time between a death and registration is eight days.

    •American Association of Suicidology facts and statistics which are categorized by age, gender, region and ethnicity.

    Inspiration: To visualize the trends and patterns by merging different datasets available regarding the subject matter from different organizations, deriving the major causes for the drastic stride. And also observing the changes in patterns over the years by country, sex and ethnicity

    Understanding the data: It is always tricky to understand the suicide statistics as they may not be so straight forward as they appear to be. Generally, the rate is per 100,000. It is done this way to adjust the underlying population size. ‘Age-standardized’ rates have been standardized to the world population to increase the confidence while making the comparisons. On the other hand, ‘Crude rates’ have not been standardized like the prior, so they are just the basic calculation of number of deaths divided by the population (x100,000). The size of the population and specific cohort is also to be taken into account as smaller groups often produce less reliable rates per 100,000. When examining the suicide trends over a period of time it is also important to look over a relatively long period. Increases and decreases for a year at a time should not be considered in isolation.

  4. US Veteran Suicides

    • kaggle.com
    zip
    Updated Nov 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksey Bilogur (2017). US Veteran Suicides [Dataset]. https://www.kaggle.com/residentmario/us-veteran-suicides
    Explore at:
    zip(28993 bytes)Available download formats
    Dataset updated
    Nov 14, 2017
    Authors
    Aleksey Bilogur
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    https://i.imgur.com/Vrs6apv.png" alt="">

    Context

    There is a well-documented phenomenon of increased suicide rates among United States military veterans. One recent analysis, published in 2016, found the suicide rate amongst veterans to be around 20 per day. The widespread nature of the problem has resulted in efforts by and pressure on the United States military services to combat and address mental health issues in and after service in the country's armed forces.

    In 2013 News21 published a sequence of reports on the phenomenon, aggregating and using data provided by individual states to typify the nationwide pattern. This dataset is the underlying data used in that report, as collected by the News21 team.

    Content

    The data consists of six files, one for each year between 2005 and 2011. Each year's worth of data includes the general population of each US state, a count of suicides, a count of state veterans, and a count of veteran suicides.

    Acknowledgements

    This data was originally published by News21. It has been converted from an XLS to a CSV format for publication on Kaggle. The original data, visualizations, and stories can be found at the source.

    Inspiration

    What is the geospatial pattern of veterans in the United States? How much more vulnerable is the average veteran to suicide than the average citizen? Is the problem increasing or decreasing over time?

  5. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Nov 29, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  6. d

    Deaths from Suicide - Dataset - Datopian CKAN instance

    • demo.dev.datopian.com
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Deaths from Suicide - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/lcc--deaths-from-suicide
    Explore at:
    Dataset updated
    Oct 7, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  7. N

    New York City Leading Causes of Death

    • data.cityofnewyork.us
    • catalog.data.gov
    csv, xlsx, xml
    Updated Dec 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2024). New York City Leading Causes of Death [Dataset]. https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/jb7j-dtam
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Department of Health and Mental Hygiene (DOHMH)
    Area covered
    New York
    Description

    The leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.

    Report last ran: 09/24/2019
    Rates based on small numbers (RSE > 30) as well as aggregate counts less than 5 have been suppressed in downloaded data

    Source: Bureau of Vital Statistics and New York City Department of Health and Mental Hygiene

  8. Suicide Mortality Rates, Borough - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Suicide Mortality Rates, Borough - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/suicide-mortality-rates-borough
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Table of directly (DSR) age-standardised rates of suicides per 100,000 population, and Indirectly (SMR) (Includes undetermined Injuries), all ages and age 15 plus, three year (pooled) average and annual, by sex. Deaths from intentional self-harm and injury undetermined whether accidentally or purposely inflicted (ICD-10 X60-X84, Y10-Y34 exc Y33.9, ICD-9 E950-E959 and E980-E989 exc E988.8), registered in the respective calendar year(s). DSR stands for Directly age-Standardised Rates. Mortality rates are age standardised using the European Standard Population as defined by the World Health Organisation. 3 year average rates are calculated as the average of single year rates for 3 successive years. Standardised Mortality Ratio (SMR), England = 100. The annual rates at borough level are likely to be subject to relatively high levels of variability of numbers of suicides from year to year because of the relatively small numebrs of suicides that occur within boroughs. When comparing boroughs against each other, the three-year combined rate would provide a higher level of confidence. NHS mental health information can be found here. Various other suicide indicators are available from IC NHS website, including years of life lost, crude death rates, and indirectly standardised ratios (SMR). Follow: Compendium of population health indicators > Illness and Condition > Mental health and behavioural disorders

  9. d

    Numbers and rates of suicides by Area 2002 to 2013 - Datasets - Data North...

    • hub.datanorthyorkshire.org
    Updated Apr 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Numbers and rates of suicides by Area 2002 to 2013 - Datasets - Data North Yorkshire [Dataset]. https://hub.datanorthyorkshire.org/dataset/numbers-and-rates-of-suicides-by-area-2002-to-2013
    Explore at:
    Dataset updated
    Apr 13, 2016
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    North Yorkshire, Yorkshire
    Description

    Data published by the Office for National Statistics

  10. Demographic Trends and Health Outcomes in the U.S

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Demographic Trends and Health Outcomes in the U.S [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographic-trends-and-health-outcomes-in-the-u
    Explore at:
    zip(1726637 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Demographic Trends and Health Outcomes in the U.S

    Inequalities,Risk Factors and Access to Care

    By Data Society [source]

    About this dataset

    This dataset contains key demographic, health status indicators and leading cause of death data to help us understand the current trends and health outcomes in communities across the United States. By looking at this data, it can be seen how different states, counties and populations have changed over time. With this data we can analyze levels of national health services use such as vaccination rates or mammography rates; review leading causes of death to create public policy initiatives; as well as identify risk factors for specific conditions that may be associated with certain populations or regions. The information from these files includes State FIPS Code, County FIPS Code, CHSI County Name, CHSI State Name, CHSI State Abbreviation, Influenza B (FluB) report count & expected cases rate per 100K population , Hepatitis A (HepA) Report Count & expected cases rate per 100K population , Hepatitis B (HepB) Report Count & expected cases rate per 100K population , Measles (Meas) Report Count & expected cases rate per 100K population , Pertussis(Pert) Report Count & expected case rate per 100K population , CRS report count & expected case rate per 100K population , Syphilis report count and expected case rate per 100k popuation. We also look at measures related to preventive care services such as Pap smear screen among women aged 18-64 years old check lower/upper confidence intervals seperately ; Mammogram checks among women aged 40-64 years old specified lower/upper conifence intervals separetly ; Colonosopy/ Proctoscpushy among men aged 50+ measured in lower/upper limits ; Pneumonia Vaccination amongst 65+ with loewr/upper confidence level detail Additionally we have some interesting trend indicating variables like measures of birth adn death which includes general fertility ratye ; Teen Birth Rate by Mother's age group etc Summary Measures covers mortality trend following life expectancy by sex&age categories Vressionable populations access info gives us insight into disablilty ratio + access to envtiromental issues due to poor quality housing facilities Finally Risk Factors cover speicfic hoslitic condtiions suchs asthma diagnosis prevelance cancer diabetes alcholic abuse smoking trends All these information give a good understanding on Healthy People 2020 target setings demograpihcally speaking hence will aid is generating more evience backed policies

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    What the Dataset Contains

    This dataset contains valuable information about public health relevant to each county in the United States, broken down into 9 indicator domains: Demographics, Leading Causes of Death, Summary Measures of Health, Measures of Birth and Death Rates, Relative Health Importance, Vulnerable Populations and Environmental Health Conditions, Preventive Services Use Data from BRFSS Survey System Data , Risk Factors and Access to Care/Health Insurance Coverage & State Developed Types of Measurements such as CRS with Multiple Categories Identified for Each Type . The data includes indicators such as percentages or rates for influenza (FLU), hepatitis (HepA/B), measles(MEAS) pertussis(PERT), syphilis(Syphilis) , cervical cancer (CI_Min_Pap_Smear - CI_Max\Pap \Smear), breast cancer (CI\Min Mammogram - CI \Max \Mammogram ) proctoscopy (CI Min Proctoscopy - CI Max Proctoscopy ), pneumococcal vaccinations (Ci min Pneumo Vax - Ci max Pneumo Vax )and flu vaccinations (Ci min Flu Vac - Ci Max Flu Vac). Additionally , it provides information on leading causes of death at both county levels & national level including age-adjusted mortality rates due to suicide among teens aged between 15-19 yrs per 100000 population etc.. Furthermore , summary measures such as age adjusted percentage who consider their physical health fair or poor are provided; vulnerable populations related indicators like relative importance score for disabled adults ; preventive service use related ones ranging from self reported vaccination coverage among men40-64 yrs old against hepatitis B virus etc...

    Getting Started With The Dataset

    To get started with exploring this dataset first your need to understand what each column in the table represents: State FIPS Code identifies a unique identifier used by various US government agencies which denote states . County FIPS code denotes counties wi...

  11. NCHS - Injury Mortality: United States

    • catalog.data.gov
    • data.virginia.gov
    • +8more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Injury Mortality: United States [Dataset]. https://catalog.data.gov/dataset/nchs-injury-mortality-united-states
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2). Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. ICD–10: External cause of injury mortality matrix. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf. Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.

  12. w

    Deaths from Suicide

    • data.wu.ac.at
    csv, html
    Updated Nov 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2017). Deaths from Suicide [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/Nzg3ODQ1Y2YtZmJjNy00ZmFlLWE3ZGUtZWIyMzFkMzVlMmM5
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Nov 11, 2017
    Dataset provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages.

    Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health.

    Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm. The population denominators for rates are age 10 and over.

    Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 4.10. This data is updated annually.

  13. w

    Numbers and rates of suicides by Area 2002 to 2013

    • data.wu.ac.at
    • data.europa.eu
    csv, html
    Updated Jun 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Yorkshire County Council (2017). Numbers and rates of suicides by Area 2002 to 2013 [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/YjVjOTUyYmUtYTNlNi00ZGU4LThmMWUtMzJiMDE4NTEyMTI5
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Jun 23, 2017
    Dataset provided by
    North Yorkshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Data published by the Office for National Statistics

  14. Probable Suicides

    • find.data.gov.scot
    • dtechtive.com
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Records of Scotland (2023). Probable Suicides [Dataset]. https://find.data.gov.scot/datasets/13214
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset provided by
    National Records of Scotlandhttps://www.nrscotland.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    Information on the numbers of deaths which were known to be, or are thought likely to be, the result of intentional self-harm, 2021 and previous years.

  15. Death in the United States

    • kaggle.com
    zip
    Updated Aug 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2017). Death in the United States [Dataset]. https://www.kaggle.com/cdc/mortality
    Explore at:
    zip(766333584 bytes)Available download formats
    Dataset updated
    Aug 3, 2017
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.

    It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.

    Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.

    Overview

    This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.

    A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.

    All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.

    Project ideas

    • The CDC's mortality data was the basis of a widely publicized paper, by Anne Case and Nobel prize winner Angus Deaton, arguing that middle-aged whites are dying at elevated rates. One of the criticisms against the paper is that it failed to properly account for the exact ages within the broad bins available through the CDC's WONDER tool. What do these results look like with exact/not-binned age data?
    • Similarly, how sensitive are the mortality trends being discussed in the news to the choice of bin-widths?
    • As noted above, the data preparation process could have introduced errors. Can you find any discrepancies compared to the aggregate metrics on WONDER? If so, please let me know in the forums!
    • WONDER is cited in numerous economics, sociology, and public health research papers. Can you find any papers whose conclusions would be altered if they used the exact data available here rather than binned data from Wonder?

    Differences from the first version of the dataset

    • This version of the dataset was prepared in a completely different many. This has allowed us to provide a much larger volume of data and ensure that codes are available for every field.
    • We've replaced the batch of sql files with a single JSON per year. Kaggle's platform currently offer's better support for JSON files, and this keeps the number of files manageable.
    • A tutorial kernel providing a quick introduction to the new format is available here.
    • Lastly, I apologize if the transition has interrupted anyone's work! If need be, you can still download v1.
  16. Covid-19 Global Dataset

    • kaggle.com
    zip
    Updated May 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Assaker (2022). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/josephassaker/covid19-global-dataset
    Explore at:
    zip(2032435 bytes)Available download formats
    Dataset updated
    May 15, 2022
    Authors
    Joseph Assaker
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    For the latest analysis and visualizations of the COVID-19 pandemic, check out my constantly updated EDA notebook here 📈.

    Context

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic.

    Since its first identification in December 2019 in Wuhan, China, this virus has taken the world by storm. Some people prefer to look at the positive side of things and how this pandemic has brought forward several positive changes. However, the collateral damages produced by this pandemic cannot be overlooked. From the Economic impact to Mental Health impacts, this pandemic period will arguably be one of the hardest periods we'll encounter in our lives. That being said, we always have to arm ourselves with hope. With the new advancements in the vaccine studies, let's hope to wake up from this nightmare as soon as possible.

    “Hope is being able to see that there is light despite all of the darkness.” – Desmond Tutu

    As for the reason for me building this dataset, it's because I couldn't get my hands on an easily digestible and up-to-date dataset of Covid-19, so, I decided to build my own using Python and web scraping techniques. I will also update this dataset as frequently as possible!

    Content

    This data was scraped from woldometers.info on 2022-05-14 by Joseph Assaker.

    225 countries are represented in this data.

    All of countries have records dating from 2020-2-15 until 2022-05-14 (820 days per country). That's with the exception of China, which has records dating from 2020-1-22 until 2022-05-14 (844 days per country), and Palau which has records dating from 2021-8-25 until 2022-05-14 (263 days per country)..

    Summary Data Columns Description:

    • country: designates the Country in which the the row's data was observed.
    • continent: designates the Continent of the observed country.
    • total_confirmed: designates the total number of confirmed cases in the observed country.
    • total_deaths: designates the total number of confirmed deaths in the observed country.
    • total_recovered: designates the total number of confirmed recoveries in the observed country.
    • active_cases: designates the number of active cases in the observed country.
    • serious_or_critical: designates the estimated number of cases in serious or critical conditions in the observed country.
    • total_cases_per_1m_population: designates the number of total cases per 1 million population in the observed country.
    • total_deaths_per_1m_population: designates the number of total deaths per 1 million population in the observed country.
    • total_tests: designates the number of total tests done in the observed country.
    • total_tests_per_1m_population: designates the number of total test done per 1 million population in the observed country.
    • population: designates the population count in the observed country.

    Daily Data Columns Description:

    • date: designates the date of observation of the row's data in YYYY-MM-DD format.
    • country: designates the Country in which the the row's data was observed.
    • cumulative_total_cases: designates the cumulative number of confirmed cases as of the row's date, for the row's country.
    • daily_new_cases: designates the daily new number of confirmed cases on the row's date, for the row's country.
    • active_cases: designates the number of active cases (i.e., confirmed cases that still didn't recover nor die) on the row's date, for the row's country.
    • cumulative_total_deaths: designates the cumulative number of confirmed deaths as of the row's date, for the row's country.
    • daily_new_deaths: designates the daily new number of confirmed deaths on the row's date, for the row's country.

    Acknowledgements

    As previously mentioned, all the data present in this dataset is scraped from worldometers.info.

    Inspiration

    Going through this data, Kagglers can visualize various trends in their own country, or compare several countries. One can also combine this dataset with other news and key points in time (lockdowns, new UK mutation, Holidays, etc.) in order to study the effects of these events on the progression of Covid-19 in a multitude of countries. Implementing time series analysis on this dataset would also be an amazing idea! Getting a deep learning algorithm to learn from this sea of data and try to predict the future turn of events could be quite interesting!

  17. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  18. m

    Mortality in Russia by cause of death in 2018 (absolute numbers)

    • data.mendeley.com
    Updated Mar 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergey Soshnikov (2020). Mortality in Russia by cause of death in 2018 (absolute numbers) [Dataset]. http://doi.org/10.17632/hy56kxs4bt.1
    Explore at:
    Dataset updated
    Mar 22, 2020
    Authors
    Sergey Soshnikov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Russia
    Description

    Data Set from the Russian Federation Federal State Statistics Service - Росстат. Collected, translated into English language and published. Mortality in Russia by cause of death in 2018 (absolute numbers).

    Causes of death statistics are obtained from the inscriptions in medical death certificates filled in by a physician referring to disease, accident, homicide, suicide or any other external factor (injuries due to actions envisaged by the law, non-specified injuries, injuries caused by military actions) which led directly to death. Such inscriptions are used as a reason for classifying death causes in civil registration records of deaths.

    Some of the presented causes of death: Cause of death, Cholera, Typhoid fever, Paratyphoid, Salmonella infections, Shigellosis, Food poisoning, Intestinal infections, Tuberculosis, Plague, Anthrax, Brucellosis, Leprosy, Tetanus, Diphtheria, Whooping cough Scarlet fever, Meningococcal infection, Sepsis, Erysipelas, Other bacterial infections, Syphilis, Sexually transmitted infections, Typhus, Poliomyelitis, Rabies, Viral encephalitis, Measles, Hepatitis A, Human Immunodeficiency Virus (HIV) Disease, Other diseases caused by viruses, Malaria, Leishmaniasis, Trypanosomiasis, Schistosomiasis, Malignant, Leukemia, Neoplasms, Diabetes, Diseases of the endocrine system, eating disorders and metabolic disorders, Mental disorders, Parkinson's disease, Alzheimer's disease, Multiple sclerosis, Hypertension, myocardial infarction, Myocardial infarction, Stroke, Urolithiasis, Birth injury, Intrauterine hypoxia and asphyxia in childbirth, Suicides, Murder, Firearm Accident, Other accidents, Causes of death due to alcohol, Drug-related causes of death, All types of transport accidents And many more causes of death.

  19. Drug overdose death

    • kaggle.com
    zip
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Drug overdose death [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/drug-overdose-death/code
    Explore at:
    zip(582 bytes)Available download formats
    Dataset updated
    Feb 22, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F8a1e63df085793d18e2d1fa2109ebd44%2Fgrap%20video%201.gif?generation=1708634385396138&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F296225796c579724b56cb1d746475d93%2FToday%20(1).gif?generation=1708634392024756&alt=media" alt="">

    Annual number of deaths in the United States from drug overdose per 100,000 people. Overdoses can result from intentional excessive use of a substance, but can also result from 'poisoning' where substances have been altered or mixed, such that the user is unaware of the drug's potency.

    The data of this indicator is based on the following sources: US Centers for Disease Control and Prevention WONDER Data published by US Centers for Disease Control and Prevention WONDER

    Retrieved from https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates How we process data at Our World in Data: All data and visualizations on Our World in Data rely on data sourced from one or several original data providers. Preparing this original data involves several processing steps. Depending on the data, this can include standardizing country names and world region definitions, converting units, calculating derived indicators such as per capita measures, as well as adding or adapting metadata such as the name or the description given to an indicator.

    At the link below you can find a detailed description of the structure of our data pipeline, including links to all the code used to prepare data across Our World in Data.

    Read about our data pipeline How to cite this data: In-line citation If you have limited space (e.g. in data visualizations), you can use this abbreviated in-line citation:

    Any opioids Deaths per 100,000 people attributed to any opioids.

    Source US Centers for Disease Control and Prevention WONDER – processed by Our World in Data Unit deaths per 100,000

  20. Tesla Deaths (Updated 2023)

    • kaggle.com
    zip
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Tesla Deaths (Updated 2023) [Dataset]. https://www.kaggle.com/datasets/thedevastator/tesla-accident-fatalities-analysis-and-statistic/discussion
    Explore at:
    zip(90953 bytes)Available download formats
    Dataset updated
    Feb 1, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Tesla Deaths

    An In-depth Look into Driver, Occupant, and Pedestrian Deaths

    By [source]

    About this dataset

    This dataset reveals an in-depth analysis of tragic Tesla vehicle accidents that have resulted in the death of a driver, occupant, cyclist, or pedestrian. It contains an extensive amount of information related to the fatal incidents including the date and location of each crash, model type involved and if Autopilot was enabled at the time. Every case is given its own unique identifier for easy reference and thorough review. Now is your chance to dive deep into these records to truly understand what happened during those tragic events and how we can prevent them from happening again

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive overview of the Tesla vehicle accidents that have resulted in fatalities. It includes details on the date and location of each incident, model involved, crash description, fatalities, and Autopilot usage. This dataset can be used to analyze the frequency and locations of these fatal accidents as well as gain valuable insights into potential safety risks associated with driving/operating Tesla vehicles.

    To begin your analysis with this dataset, start by reading through the information contained in each column: Case # (unique identifier for each case), Year (year of incident), Date (date of incident), Country (country where the accident occurred), State (state where the accident occurred), Description (description of crash), Model (model of Tesla vehicle involved) Source(source). All columns are mandatory for analysis.

    Once you have familiarized yourself with this data set, consider looking at how many fatal accidents there have been over time by creating line graphs to show trends over years or states. You may also decide to review incidents based on geographic location or model type to determine which locations or model types may require further investigation and testing in terms of Tesla's safety features. Additionally consider using descriptive analytics such as means and medians to determine if certain models are more prone to accidents than others compared against one another; while also exploring if Autopilot feature usage has any correlation to higher rates/ numbers involving fatalities .

    Using this data set can help increase awareness about potential safety risk related issues associated with driving/ operating a Tesla vehicle allowing individuals involved production side decisions or investing decisions have a better understanding when entering such fields . We do recommend however that when conducting your analysis , it’s important understand proper ways for handling missing data points so that users can get an accurate picture related current issues surrounding vehicular mistakes involving teslas vehicles

    Research Ideas

    • Estimating the safety risk of Autopilot feature usage in different countries and states. By analyzing the differences in fatalities between Tesla vehicles operating with and without Autopilot, researchers can infer risks associated with Autopilot use.
    • Examining the relation between driver / occupant fatalities and Tesla vehicle models over time. Through observation of trends in model-specific fatalities across years, engineers may be able to identify vulnerabilities or safety features that should be improved upon in the next version of a car model.
    • Creating predictive models to assess crash probability per country or state based on uncontrollable factors such as road environment or traffic conditions by analyzing large numbers of reported accidents for which there were no fatalities but had similar characteristics (time of day, weather conditions, speed limit etc). Technological developments such as self-driving cars could potentially benefit from this type of predictive evaluation method to enhance their safety by improving preventive measures ahead of accidents occurring

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: Tesla Deaths - Deaths (3).csv | Column name | Description ...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dhanushka Tharanga (2024). WHO Suicide Data [Dataset]. https://www.kaggle.com/datasets/dhanushkatharanga/who-suicide-data
Organization logo

WHO Suicide Data

Explore at:
zip(311347 bytes)Available download formats
Dataset updated
Jul 8, 2024
Authors
Dhanushka Tharanga
Description

Introduction Suicide is still one of the world's most important public health issues, with the World Health Organization (WHO) claiming that over 700,000 people die by suicide annually. Suicide is one of the main causes of death, with far-reaching consequences for people, families, and society. Understanding the global patterns and trends in suicide rates is critical for creating effective prevention methods and providing the required support to at-risk individuals. The purpose of this report is to visualize global data on suicides using the WHO dataset (who_suicide_statistics.csv). This dataset has statistics on the number of suicides in various countries, years, age categories, and sexes. By analyzing this data, it will guide us to learn about demographic and temporal patterns of suicide, show high-risk groups, and highlight regions facing significant challenges. The visualizations will employ various techniques such as graphs, charts, and maps to effectively convey the information and guide the viewer through the findings. Through these visualizations and insights, I suggested key points and recommendations needed to minimize suicide incidents in future. Description of the Dataset The dataset (who_suicide_statistics.csv) has extensive data on global suicide statistics collected by the World Health Organization. This dataset is an invaluable resource for analyzing the patterns and trends in suicide rates across countries, years, age groups, and genders. Below is a detailed description of the columns in the dataset and the kind of information each one provides. Columns in the Dataset • country: Description: The name of the country where the data was collected. Type: Categorical Example Values: 'United States', 'Japan', 'Germany' • year: Description: The year the data was recorded. Type: Numerical Example Values: 2000, 2005, 2010 - age: Description: The age group of the individuals whose suicide data is recorded. Type: Categorical Example Values: '15-24', '25-34', '35-44', '45-54', '55-64', '65-74', '75+' • sex: Description: The sex of the individuals whose suicide data is recorded. Type: Categorical Example Values: 'male', 'female' • suicide_no: Description: The number of suicide cases recorded for the specified country, year, age and sex. Type: Numerical Example Values: 15, 42, 108 • population: Description: The population of the specified age group and sex in the country for that year. Type: Numerical Example Values: 345633, 785042, 3356435 Additional Information • Suicide Rate Calculation: Using the suicide_no and population columns, we can calculate the suicide rate per 100,000 population, which normalizes the data and allows for fair comparisons across different countries and demographic groups. Formula: suicides_rate = (suicide_no / population) * 100000

Search
Clear search
Close search
Google apps
Main menu