14 datasets found
  1. T

    Vital Signs: Rent Payments – by city (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by city (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-city-2022-/wjgr-k4g6
    Explore at:
    csv, tsv, application/rdfxml, xml, json, application/rssxmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  2. F

    Consumer Price Index for All Urban Consumers: Rent of Primary Residence in...

    • fred.stlouisfed.org
    json
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average [Dataset]. https://fred.stlouisfed.org/series/CUUR0000SEHA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average (CUUR0000SEHA) from Dec 1914 to May 2025 about primary, rent, urban, consumer, CPI, inflation, price index, indexes, price, and USA.

  3. i

    Rent Cost Burden Levels - Dataset - The Indiana Data Hub

    • hub.mph.in.gov
    Updated Jun 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Rent Cost Burden Levels - Dataset - The Indiana Data Hub [Dataset]. https://hub.mph.in.gov/dataset/rent-cost-burden-levels
    Explore at:
    Dataset updated
    Jun 29, 2018
    Description

    This U.S. Census Bureau American Community Survey (ACS) five-year estimates data set includes information about rent cost burden levels, calculated as gross rent as a percentage of household income in the past 12 months, in a number of geographic areas ranging from statewide to census tract. The data set includes median gross rent data from 2009-2016.

  4. V

    Virginia Fair Market Rent for 2024 - 2025

    • data.virginia.gov
    xlsx
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). Virginia Fair Market Rent for 2024 - 2025 [Dataset]. https://data.virginia.gov/dataset/virginia-fair-market-rent-for-2021
    Explore at:
    xlsx(26912)Available download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Other
    Area covered
    Virginia
    Description

    Virginia (VA) has the 19th highest rent in the country out of 56 states and territories. The Fair Market Rent in Virginia ranges from $701 for a 2-bedroom apartment in Grayson County, VA to $1,765 for a 2-bedroom unit in Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area.

    For FY 2024, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $1,772 per month and $3,015 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,056 per month.

    Approximately 15% of Americans qualify for some level of housing assistance. The population in Virginia is around 2,038,847 people. So, there are around 305,827 people in Virginia who could be receiving housing benefits from the HUD. For FY 2025, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $2,012 per month and $3,413 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,059 per month.

  5. ACS Housing Costs Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • opendata.suffolkcountyny.gov
    • +4more
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Housing Costs Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/9c7647840d6540e4864d205bac505027
    Explore at:
    Dataset updated
    Dec 12, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows housing costs as a percentage of household income. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. This layer is symbolized to show the percent of renter households that spend 30.0% or more of their household income on gross rent (contract rent plus tenant-paid utilities). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25070, B25091 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  6. T

    Vital Signs: Rent Payments – by county (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by county (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-county-2022-/kmev-u6e5
    Explore at:
    tsv, application/rssxml, json, csv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  7. Housing Affordability Data System (HADS)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Housing Affordability Data System (HADS) [Dataset]. https://catalog.data.gov/dataset/housing-affordability-data-system-hads
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. These dataset give the community of housing analysts the opportunity to use a consistent set of affordability measures. The most recent year HADS is available as a Public Use File (PUF) is 2013. For 2015 and beyond, HADS is only available as an IUF and can no longer be released on a PUF. Those seeking access to more recent data should reach to the listed point of contact.

  8. d

    Housing Summaries (2005-2009)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of New Mexico, Bureau of Business and Economic Research (BBER) (Point of Contact) (2020). Housing Summaries (2005-2009) [Dataset]. https://catalog.data.gov/dataset/housing-summaries-2005-2009
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    University of New Mexico, Bureau of Business and Economic Research (BBER) (Point of Contact)
    Description

    The American Community Survey (ACS) is a nationwide survey conducted by the U.S. Census Bureau that is designed to provide communities a fresh look at how they are changing. It is a critical element in the Census Bureau's reengineered decennial census program, incorporating the detailed socioeconomic and housing questions that were previously asked on the decennial census long form into the ACS questionnaire. The ACS now collects and produces this detailed population and housing information every year instead of every ten years. Data are collected on an on-going basis throughout the year and are released each year for large geographic areas, those with 65,000 persons or more. However, sample sizes are not large enough for annual releases that cover smaller areas, those with less than 65,000 persons. Data that are suitable for areas with 20,000 to 65,000 persons are accumulated over three years and termed a three-year period estimate, the first of which was for the 2005-2007 period. Data that are suitable for areas with less than 20,000 persons are accumulated over five years and termed a five-year period estimate, the first of which was for the 2005-2009 period. The data in this series of RGIS Clearinghouse tables are for all New Mexico counties and are based on the 2005-2009 ACS Five-Year Period Estimates collected between January 2005 and December 2009. These data tables are a summary of all major housing topics published through the ACS, providing information about the condition of housing, and illuminating various financial characteristics of the housing stock. Major topics include housing occupancy, year structure built, rooms and bedrooms, housing tenure (owners and renters), year householder moved into unit, vehicles available, type of house heating fuel, units without complete plumbing and kitchen facilities or without telephone service, occupants per room, home value, mortgage status, monthly owner costs, owner costs as a percentage of household income, gross rent, and gross rent as a percentage of household income. Percentages are shown along with numeric estimates for most data items. Because the data are based on a sample the Census Bureau also provides information about the magnitude of sampling error. Consequently, the estimated margin of error (MOE) is shown next to each data item. Each housing topic is covered in a separate file in both Excel and CSV formats. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.

  9. Housing Cost Burden

    • data.ca.gov
    • data.chhs.ca.gov
    • +4more
    pdf, xlsx, zip
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Housing Cost Burden [Dataset]. https://data.ca.gov/dataset/housing-cost-burden
    Explore at:
    xlsx, pdf, zipAvailable download formats
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.

  10. d

    ACS 1-Year Housing Characteristics DC

    • catalog.data.gov
    • opendata.dc.gov
    • +1more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 1-Year Housing Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-1-year-housing-characteristics-dc
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Occupancy status, Units, Rooms, Year built, Owner/Renter (Tenure), Mortgage/Rent costs, and more. This service is updated annually with American Community Survey (ACS) 1-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2023. ACS Table(s): DP04. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  11. T

    Vital Signs: Rent Payments – by tract (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by tract (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-tract-2022-/iq85-54tc
    Explore at:
    application/rssxml, json, csv, tsv, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  12. ACS Housing Units Vacancy Status Variables - Boundaries

    • hub.arcgis.com
    • hub-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Nov 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Housing Units Vacancy Status Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/d6d979b24c464b89bf490d4940eac9ee
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows vacant housing by type (for rent/sale, vacation home, etc.). This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.This layer is symbolized to show the percent of housing units that are vacant. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25004, B25002, B25003 (Not all lines of ACS tables B25002 and B25003 are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. d

    ACS 5-Year Housing Characteristics DC

    • opendata.dc.gov
    • catalog.data.gov
    • +2more
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Housing Characteristics DC [Dataset]. https://opendata.dc.gov/datasets/5eb4b5beba3342c685e7f33fda575781
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Occupancy status, Units, Rooms, Year built, Owner/Renter (Tenure), Mortgage/Rent costs, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023 ACS Table(s): DP04. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  14. a

    Los Angeles Index of Displacement Pressure

    • citysurvey-lacs.opendata.arcgis.com
    • visionzero.geohub.lacity.org
    • +3more
    Updated Oct 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataLA (2016). Los Angeles Index of Displacement Pressure [Dataset]. https://citysurvey-lacs.opendata.arcgis.com/datasets/70ed646893f642ddbca858c381471fa2
    Explore at:
    Dataset updated
    Oct 13, 2016
    Dataset authored and provided by
    DataLA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Los Angeles Index of Displacement PressureThe Los Angeles Index of Displacement Pressure combines measures that past research efforts and our own original research have shown correlate with future change and displacement pressure. Created in 2015/2016, the index primarily uses data from 2012-2015.These seven measures are applied at the Census Tract level for tracts where >=40% of households earn less than the City's median income. The measures are grouped into two classes: change factors and displacement pressure factors.Change factor measures are those that suggest future revitalization is likely due to investment, projected housing price gains, and proximity to recently changed areas. On the other hand, displacement pressure factors capture areas with a high concentration of existing residents who may have difficulty absorbing massive rent increases that often accompany revitalization. The Los Angeles Index of Displacement Pressure captures the intersection between these two classes.Change Measures Transportation InvestmentMeasure 1: Distance to current rail stations (within a 1/2 mile radius. Tracts beyond 1/2 mile receive no score for this measure). Source: LA MetroMeasure 2: Distance to rail stations under construction/recently opened in 2016 (within a 1/2 mile radius. Tracts beyond 1/2 mile receive no score for this measure)Source: LA Metro Proximity to Rapidly Changing NeighborhoodsMeasure 3: Distance to the closest "top tier" changing neighborhood, as defined by the Los Angeles Index of Neighborhood Change (within a 1 mile radius. Tracts beyond 1 mile receive no score for this measure)Source: The Los Angeles Index of Neighborhood Change Housing MarketMeasure 4: Change in housing price projections from 2015 to 2020 Source: ESRI Community Analyst Displacement Pressure FactorsMeasure 5: Percent of households that rentSource: American Community Survey, Five-Year Estimate, 2014Measure 6: Percent of households that are extremely rent burdened (pay >=50% of household income on rent)Source: American Community Survey, Five-Year Estimate, 2014Measure 7: The number of affordable properties and housing units that are due to expire by 2023.Source: The Los Angeles Housing Element, 2012Date updated: April 7, 2018Refresh rate: Never - Historical data

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2023). Vital Signs: Rent Payments – by city (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-city-2022-/wjgr-k4g6

Vital Signs: Rent Payments – by city (2022)

Explore at:
csv, tsv, application/rdfxml, xml, json, application/rssxmlAvailable download formats
Dataset updated
Feb 1, 2023
Description

VITAL SIGNS INDICATOR
Rent Payments (EC8)

FULL MEASURE NAME
Median rent payment

LAST UPDATED
January 2023

DESCRIPTION
Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Count 2 (1970)
Form STF1 (1980-1990)
Form SF3a (2000)

U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B25058 (2005-2021; median contract rent)

Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
1970-2021

CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov

METHODOLOGY NOTES (across all datasets for this indicator)
Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

Search
Clear search
Close search
Google apps
Main menu