The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Description for each of the variables:
The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of information about all the latest smartphones available in the market as of the current time.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13571604%2Fb608498b1cf7f70b9a22952566197db6%2FScreenshot%202023-08-02%20003740.png?generation=1690961033930490&alt=media" alt="">
The dataset was created by web scraping reputable online sources to gather accurate and up-to-date information about various smartphone models, their specifications, features, and pricing.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total *** billion users (+***** percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.
To date (April 2020), Android is still the most popular mobile operating system in the world. Taking into account billion of Android users worldwide, mining this data has the potential to reveal user behaviors and trends in the whole global scope.
There are 2 CSV files: - app.csv with 53,732 rows and 18 columns. - comment.csv with 1,468,173 rows and 4 columns.
The scraping was done in April 2020.
This dataset is obtained from scraping Google Play Store. Without Google and Android, this dataset wouldn’t have existed.
The dataset is first published in this blog.
Business trends on mobile can be explored by examining this dataset.
China is leading the ranking by number of smartphone users, recording ****** million users. Following closely behind is India with ****** million users, while Seychelles is trailing the ranking with **** million users, resulting in a difference of ****** million users to the ranking leader, China. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Model:
Description: The name of the smartphone model. Example: "Samsung Galaxy S21", "iPhone 13", "Google Pixel 6". Notes: This is a categorical variable that uniquely identifies each phone. Price:
Description: The cost of the smartphone, typically in the local currency (e.g., USD). Example: 999, 799, 699. Notes: This is a numerical variable, which can be used to analyze the affordability and market positioning of different models. RAM:
Description: The amount of random-access memory (RAM) in the smartphone, typically measured in gigabytes (GB). Example: 4 GB, 8 GB, 12 GB. Notes: This numerical variable impacts the phone's ability to handle multiple tasks simultaneously and affects overall performance. Display:
Description: The specifications of the smartphone's display, often given in terms of size (in inches) and resolution. Example: "6.1 inches, 1080x2400 pixels". Notes: This variable is usually a mix of numerical and categorical data, reflecting the screen size and resolution. Rear Camera:
Description: The specifications of the main (rear) camera(s), often including the number of cameras, megapixels (MP), and other features (e.g., wide-angle, telephoto). Example: "12 MP + 12 MP dual", "108 MP". Notes: This is often a categorical variable with numerical components, indicating the camera's capabilities. Front Camera:
Description: The specifications of the front (selfie) camera, typically measured in megapixels. Example: "10 MP", "32 MP". Notes: Similar to the rear camera, this is a categorical variable with numerical components, indicating the quality of the front camera. Battery:
Description: The battery capacity of the smartphone, typically measured in milliampere-hours (mAh). Example: 4000 mAh, 5000 mAh. Notes: This numerical variable impacts the phone's battery life and usage duration. Processor:
Description: The type and model of the smartphone's processor (CPU). Example: "Snapdragon 888", "Apple A14 Bionic". Notes: This categorical variable indicates the processing power and efficiency of the phone. Star Ratings:
Description: The average user rating of the smartphone, typically on a scale from 1 to 5 stars. Example: 4.5, 3.8. Notes: This numerical variable reflects user satisfaction and can be used to gauge the overall reception of the phone. Ratings:
Description: The total number of user ratings received for the smartphone. Example: 1500, 5000. Notes: This numerical variable indicates the popularity and extent of user feedback.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data acquired on various Android devices, using an Android app called ''Mimir'', developed by the authors. Focus is given on raw GNSS measurements, but other sensors are also logged in the surveys. The dataset is provided under the CC-BY 4.0 license. More information are provided inside the ''readme.md'' provided along the dataset, as well as in our related publication.
Title: System Call Traces from Real and Synthetic Sources
Description: This dataset comprises a collection of system call procedure traces collected across various devices and environments. It includes both real-world system call sequences (captured from actual android operating systems) and synthetically generated sequences designed to simulate realistic system behavior.
The data is structured to support a range of use cases, including:
Intrusion detection systems Anomaly detection Behavioral profiling of applications
The dataset is ideal for training and evaluating machine learning models that require low-level OS interaction data. By including both real and synthetic traces, it allows for balanced experimentation in controlled and uncontrolled conditions.
Features:
Real system call traces from multiple devices Synthetic traces designed to mimic real patterns Labelled for supervised learning tasks (if applicable) Suitable for time-series, classification, or sequence modeling
Intended Use: This dataset can be used in academic research, cybersecurity benchmarking, and development of intelligent systems call analysis tools.
The global smartphone penetration in was forecast to continuously increase between 2024 and 2029 by in total 20.3 percentage points. After the fifteenth consecutive increasing year, the penetration is estimated to reach 74.98 percent and therefore a new peak in 2029. Notably, the smartphone penetration of was continuously increasing over the past years.The penetration rate refers to the share of the total population.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the smartphone penetration in countries like North America and the Americas.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
We are publishing a walking activity dataset including inertial and positioning information from 19 volunteers, including reference distance measured using a trundle wheel. The dataset includes a total of 96.7 Km walked by the volunteers, split into 203 separate tracks. The trundle wheel is of two types: it is either an analogue trundle wheel, which provides the total amount of meters walked in a single track, or it is a sensorized trundle wheel, which measures every revolution of the wheel, therefore recording a continuous incremental distance.
Each track has data from the accelerometer and gyroscope embedded in the phones, location information from the Global Navigation Satellite System (GNSS), and the step count obtained by the device. The dataset can be used to implement walking distance estimation algorithms and to explore data quality in the context of walking activity and physical capacity tests, fitness, and pedestrian navigation.
Methods
The proposed dataset is a collection of walks where participants used their own smartphones to capture inertial and positioning information. The participants involved in the data collection come from two sites. The first site is the Oxford University Hospitals NHS Foundation Trust, United Kingdom, where 10 participants (7 affected by cardiovascular diseases and 3 healthy individuals) performed unsupervised 6MWTs in an outdoor environment of their choice (ethical approval obtained by the UK National Health Service Health Research Authority protocol reference numbers: 17/WM/0355). All participants involved provided informed consent. The second site is at Malm ̈o University, in Sweden, where a group of 9 healthy researchers collected data. This dataset can be used by researchers to develop distance estimation algorithms and how data quality impacts the estimation.
All walks were performed by holding a smartphone in one hand, with an app collecting inertial data, the GNSS signal, and the step counting. On the other free hand, participants held a trundle wheel to obtain the ground truth distance. Two different trundle wheels were used: an analogue trundle wheel that allowed the registration of a total single value of walked distance, and a sensorized trundle wheel which collected timestamps and distance at every 1-meter revolution, resulting in continuous incremental distance information. The latter configuration is innovative and allows the use of temporal windows of the IMU data as input to machine learning algorithms to estimate walked distance. In the case of data collected by researchers, if the walks were done simultaneously and at a close distance from each other, only one person used the trundle wheel, and the reference distance was associated with all walks that were collected at the same time.The walked paths are of variable length, duration, and shape. Participants were instructed to walk paths of increasing curvature, from straight to rounded. Irregular paths are particularly useful in determining limitations in the accuracy of walked distance algorithms. Two smartphone applications were developed for collecting the information of interest from the participants' devices, both available for Android and iOS operating systems. The first is a web-application that retrieves inertial data (acceleration, rotation rate, orientation) while connecting to the sensorized trundle wheel to record incremental reference distance [1]. The second app is the Timed Walk app [2], which guides the user in performing a walking test by signalling when to start and when to stop the walk while collecting both inertial and positioning data. All participants in the UK used the Timed Walk app.
The data collected during the walk is from the Inertial Measurement Unit (IMU) of the phone and, when available, the Global Navigation Satellite System (GNSS). In addition, the step count information is retrieved by the sensors embedded in each participant’s smartphone. With the dataset, we provide a descriptive table with the characteristics of each recording, including brand and model of the smartphone, duration, reference total distance, types of signals included and additionally scoring some relevant parameters related to the quality of the various signals. The path curvature is one of the most relevant parameters. Previous literature from our team, in fact, confirmed the negative impact of curved-shaped paths with the use of multiple distance estimation algorithms [3]. We visually inspected the walked paths and clustered them in three groups, a) straight path, i.e. no turns wider than 90 degrees, b) gently curved path, i.e. between one and five turns wider than 90 degrees, and c) curved path, i.e. more than five turns wider than 90 degrees. Other features relevant to the quality of collected signals are the total amount of time above a threshold (0.05s and 6s) where, respectively, inertial and GNSS data were missing due to technical issues or due to the app going in the background thus losing access to the sensors, sampling frequency of different data streams, average walking speed and the smartphone position. The start of each walk is set as 0 ms, thus not reporting time-related information. Walks locations collected in the UK are anonymized using the following approach: the first position is fixed to a central location of the city of Oxford (latitude: 51.7520, longitude: -1.2577) and all other positions are reassigned by applying a translation along the longitudinal and latitudinal axes which maintains the original distance and angle between samples. This way, the exact geographical location is lost, but the path shape and distances between samples are maintained. The difference between consecutive points “as the crow flies” and path curvature was numerically and visually inspected to obtain the same results as the original walks. Computations were made possible by using the Haversine Python library.
Multiple datasets are available regarding walking activity recognition among other daily living tasks. However, few studies are published with datasets that focus on the distance for both indoor and outdoor environments and that provide relevant ground truth information for it. Yan et al. [4] introduced an inertial walking dataset within indoor scenarios using a smartphone placed in 4 positions (on the leg, in a bag, in the hand, and on the body) by six healthy participants. The reference measurement used in this study is a Visual Odometry System embedded in a smartphone that has to be worn at the chest level, using a strap to hold it. While interesting and detailed, this dataset lacks GNSS data, which is likely to be used in outdoor scenarios, and the reference used for localization also suffers from accuracy issues, especially outdoors. Vezovcnik et al. [5] analysed estimation models for step length and provided an open-source dataset for a total of 22 km of only inertial walking data from 15 healthy adults. While relevant, their dataset focuses on steps rather than total distance and was acquired on a treadmill, which limits the validity in real-world scenarios. Kang et al. [6] proposed a way to estimate travelled distance by using an Android app that uses outdoor walking patterns to match them in indoor contexts for each participant. They collect data outdoors by including both inertial and positioning information and they use average values of speed obtained by the GPS data as reference labels. Afterwards, they use deep learning models to estimate walked distance obtaining high performances. Their results share that 3% to 11% of the data for each participant was discarded due to low quality. Unfortunately, the name of the used app is not reported and the paper does not mention if the dataset can be made available.
This dataset is heterogeneous under multiple aspects. It includes a majority of healthy participants, therefore, it is not possible to generalize the outcomes from this dataset to all walking styles or physical conditions. The dataset is heterogeneous also from a technical perspective, given the difference in devices, acquired data, and used smartphone apps (i.e. some tests lack IMU or GNSS, sampling frequency in iPhone was particularly low). We suggest selecting the appropriate track based on desired characteristics to obtain reliable and consistent outcomes.
This dataset allows researchers to develop algorithms to compute walked distance and to explore data quality and reliability in the context of the walking activity. This dataset was initiated to investigate the digitalization of the 6MWT, however, the collected information can also be useful for other physical capacity tests that involve walking (distance- or duration-based), or for other purposes such as fitness, and pedestrian navigation.
The article related to this dataset will be published in the proceedings of the IEEE MetroXRAINE 2024 conference, held in St. Albans, UK, 21-23 October.
This research is partially funded by the Swedish Knowledge Foundation and the Internet of Things and People research center through the Synergy project Intelligent and Trustworthy IoT Systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes network traffic data from more than 50 Android applications across 5 different scenarios. The applications are consistent in all scenarios, but other factors like location, device, and user vary (see Table 2 in the paper). The current repository pertains to Scenario C. Within the repository, for each application, there is a compressed file containing the relevant PCAP files. The PCAP files follow the naming convention: {Application Name}{Scenario ID}{#Trace}_Final.pcap.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...
Malay(Malaysia) Scripted Monologue Smartphone speech dataset, covers several domains, including chat, interactions, in-home, in-car, numbers and more, mirrors real-world interactions. Transcribed with text content, and other attributes. Our dataset was collected from extensive and diversify speakers, geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The MSCardio Seismocardiography Dataset is an open-access dataset collected as part of the Mississippi State Remote Cardiovascular Monitoring (MSCardio) study. This dataset includes seismocardiogram (SCG) signals recorded from participants using smartphone sensors, enabling scalable, real-world cardiovascular monitoring without requiring specialized equipment. The dataset aims to support research in SCG signal processing, machine learning applications in health monitoring, and cardiovascular assessment.
See the GitHub repository of this dataset for the latest updates: https://github.com/TaebiLab/MSCardio
Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. SCG is a non-invasive technique that captures chest vibrations induced by cardiac activity and respiration, providing valuable insights into cardiac function. However, the scarcity of open-access SCG datasets has been a significant limitation for research in this field. The MSCardio dataset addresses this gap by providing real-world SCG signals collected via smartphone sensors from a diverse population.
Each recording includes:
The dataset is organized as follows:
MSCardio_SCG_Dataset/
│── info/
│ └── all_subject_data.csv # Consolidated metadata for all subjects
│── MSCardio/
│ ├── Subject_XXXX/ # Subject-specific folder
│ │ ├── general_metadata.json # Demographic and device information
│ │ ├── Recording_XXX/ # Individual recordings
│ │ │ ├── scg.csv # SCG signal data
│ │ │ ├── recording_metadata.json # Timestamp and device details
This dataset is intended for research in:
Data_visualization.py
script is provided for data visualizationIf you use this dataset in your research, please cite:
@article{rahman2025MSCardio,
author = {Taebi, Amirtah{\`a} and Rahman, Mohammad Muntasir},
title = {MSCardio: Initial insights from remote monitoring of cardiovascular-induced chest vibrations via smartphones},
journal = {Data in Brief},
year = {2025},
publisher = {Elsevier}
}
For any questions regarding the dataset, please contact:
---
This dataset is provided under an open-access license. Please ensure ethical and responsible use when utilizing this dataset for research.
In 2022, smartphone vendors sold around 1.39 billion smartphones were sold worldwide, with this number forecast to drop to 1.34 billion in 2023.
Smartphone penetration rate still on the rise
Less than half of the world’s total population owned a smart device in 2016, but the smartphone penetration rate has continued climbing, reaching 78.05 percent in 2020. By 2025, it is forecast that almost 87 percent of all mobile users in the United States will own a smartphone, an increase from the 27 percent of mobile users in 2010.
Smartphone end user sales
In the United States alone, sales of smartphones were projected to be worth around 73 billion U.S. dollars in 2021, an increase from 18 billion dollars in 2010. Global sales of smartphones are expected to increase from 2020 to 2021 in every major region, as the market starts to recover from the initial impact of the coronavirus (COVID-19) pandemic.
The number of smartphone users in the United Kingdom was forecast to continuously increase between 2024 and 2029 by in total *** million users (+**** percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach ***** million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Denmark and Latvia.
The number of smartphone users in Eastern Europe was forecast to increase between 2024 and 2029 by in total 23.5 million users (+12.83 percent). This overall increase does not happen continuously, notably not in 2029. The smartphone user base is estimated to amount to 206.69 million users in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Southern Europe and Central & Western Europe.
Social media companies are starting to offer users the option to subscribe to their platforms in exchange for monthly fees. Until recently, social media has been predominantly free to use, with tech companies relying on advertising as their main revenue generator. However, advertising revenues have been dropping following the COVID-induced boom. As of July 2023, Meta Verified is the most costly of the subscription services, setting users back almost 15 U.S. dollars per month on iOS or Android. Twitter Blue costs between eight and 11 U.S. dollars per month and ensures users will receive the blue check mark, and have the ability to edit tweets and have NFT profile pictures. Snapchat+, drawing in four million users as of the second quarter of 2023, boasts a Story re-watch function, custom app icons, and a Snapchat+ badge.
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.