Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.
Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.
Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.
This dataset is ideal for a variety of applications:
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
~Up to $0.0025 per record. Min order $250
Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.
New snapshot each month, 12 snapshots/year Paid monthly
New snapshot each quarter, 4 snapshots/year Paid quarterly
New snapshot every 6 months, 2 snapshots/year Paid twice-a-year
New snapshot one-time delivery Paid once
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
If you use this dataset anywhere in your work, kindly cite as the below: L. Gupta, "Google Play Store Apps," Feb 2019. [Online]. Available: https://www.kaggle.com/lava18/google-play-store-apps
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
This information is scraped from the Google Play Store. This app information would not be available without it.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.
Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.
Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.
Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.
https://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2Fd4a6033b6bd31af45d5175d02e697934%2FAPPLEAPPS2.png?generation=1700357122842963&alt=media" alt="">
These reviews are from Apple App Store
This dataset should paint a good picture on what is the public's perception of the apps over the years. Using this dataset, we can do the following
(AND MANY MORE!)
Images generated using Bing Image Generator
Apple App Store dataset to explore detailed information on app popularity, user feedback, and monetization features. Popular use cases include market trend analysis, app performance evaluation, and consumer behavior insights in the mobile app ecosystem.
Use our Apple App Store dataset to gain comprehensive insights into the mobile app ecosystem, including app popularity, user ratings, monetization features, and user feedback. This dataset covers various aspects of apps, such as descriptions, categories, and download metrics, offering a full picture of app performance and trends.
Tailored for marketers, developers, and industry analysts, this dataset allows you to track market trends, identify emerging apps, and refine promotional strategies. Whether you're optimizing app development, analyzing competitive landscapes, or forecasting market opportunities, the Apple App Store dataset is an essential tool for making data-driven decisions in the ever-evolving mobile app industry.
This dataset is versatile and can be used for various applications: - Market Analysis: Analyze app pricing strategies, monetization features, and category distribution to understand market trends and opportunities in the App Store. This can help developers and businesses make informed decisions about their app development and pricing strategies. - User Experience Research: Study the relationship between app ratings, number of reviews, and app features to understand what drives user satisfaction. The detailed review data and ratings can provide insights into user preferences and pain points. - Competitive Intelligence: Track and analyze apps within specific categories, comparing features, pricing, and user engagement metrics to identify successful patterns and market gaps. Particularly useful for developers planning new apps or improving existing ones. - Performance Prediction: Build predictive models using features like app size, category, pricing, and language support to forecast potential app success metrics. This can help in making data-driven decisions during app development. - Localization Strategy: Analyze the languages supported and regional performance to inform decisions about app localization and international market expansion.
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.
Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.
The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.
For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.
In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).
Dataset Stats Some stats about the datasets:
D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.
D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.
Additional stats about the datasets are available here.
Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).
In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).
Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:
Dataset Files Info
Neo4j 2.0 Databases
googlePlayDB1-Jan2014_neo4j_2_0.rar
googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).
Neo4j 3.5 Databases
googlePlayDB1-Jan2014_neo4j_3_5_28.rar
googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.
In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
As COVID-19 continues to spread across the world, a growing number of malicious campaigns are exploiting the pandemic. It is reported that COVID-19 is being used in a variety of online malicious activities, including Email scam, ransomware and malicious domains. As the number of the afflicted cases continue to surge, malicious campaigns that use coronavirus as a lure are increasing. Malicious developers take advantage of this opportunity to lure mobile users to download and install malicious apps.
However, besides a few media reports, the coronavirus-themed mobile malware has not been well studied. Our community lacks of the comprehensive understanding of the landscape of the coronavirus-themed mobile malware, and no accessible dataset could be used by our researchers to boost COVID-19 related cybersecurity studies.
We make efforts to create a daily growing COVID-19 related mobile app dataset. By the time of mid-November, we have curated a dataset of 4,322 COVID-19 themed apps, and 611 of them are considered to be malicious. The number is growing daily and our dataset will update weekly. For more details, please visit https://covid19apps.github.io
This dataset includes the following files:
(1) covid19apps.xlsx
In this file, we list all the COVID-19 themed apps information, including apk file hashes, released date, package name, AV-Rank, etc.
(2)covid19apps.zip
We put the COVID-19 themed apps Apk samples in zip files . In order to reduce the size of a single file, we divide the sample into multiple zip files for storage. And the APK file name after the file SHA256.
If your papers or articles use our dataset, please use the following bibtex reference to cite our paper: https://arxiv.org/abs/2005.14619
(Accepted to Empirical Software Engineering)
@misc{wang2021virus, title={Beyond the Virus: A First Look at Coronavirus-themed Mobile Malware}, author={Liu Wang and Ren He and Haoyu Wang and Pengcheng Xia and Yuanchun Li and Lei Wu and Yajin Zhou and Xiapu Luo and Yulei Sui and Yao Guo and Guoai Xu}, year={2021}, eprint={2005.14619}, archivePrefix={arXiv}, primaryClass={cs.CR} }
Use the OpenWeb Ninja Google Play App Store Data API to access comprehensive data on Google Play Store, including Android Apps / Games, reviews, top charts, search, and more. Our extensive dataset provides over 40 app store data points, enabling you to gain deep insights into the market.
The App Store Data dataset includes all key app details:
App Name, Description, Rating, Photos, Downloads, Version Information, App Size, Permissions, Developer and Contact Information, Consumer Review Data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2Fb984828c354c4d8e72965aa78d5503ee%2Fpinterest2.png?generation=1700270897504206&alt=media" alt="">
Based on their wikipedia page
Pinterest is an American image-sharing and social media service designed to enable saving and discovery of information (specifically "ideas") like recipes, home, style, motivation, and inspiration on the internet using images and, on a smaller scale, animated GIFs and videos, in the form of pinboards. The site was created by Ben Silbermann, Paul Sciarra, and Evan Sharp and it is operated by now Pinterest, Inc., and headquartered in San Francisco.
These reviews were extracted from its Google Store page.
This dataset should paint a good picture on what is the public's perception of the app over the years. Using this dataset, we can do the following
(AND MANY MORE!)
Images generated using Bing Image Generator
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We surveyed 10,208 people from more than 15 countries on their mobile app usage behavior. The countries include USA, China, Japan, Germany, France, Brazil, UK, Italy, Russia, India, Canada, Spain, Australia, Mexico, and South Korea. We asked respondents about: (1) their mobile app user behavior in terms of mobile app usage, including the app stores they use, what triggers them to look for apps, why they download apps, why they abandon apps, and the types of apps they download. (2) their demographics including gender, age, marital status, nationality, country of residence, first language, ethnicity, education level, occupation, and household income (3) their personality using the Big-Five personality traits This dataset contains the results of the survey.
Get access to information about all apps in the Google Playstore to understand your competitors, market to app developers etc. This dataset includes all the fields available in the play store such as:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
AOS All Apps is a dataset for object detection tasks - it contains Android Apps annotations for 250 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The amount of Android apps available for download is constantly increasing, exerting a continuous pressure on developers to publish outstanding apps. Google Play (GP) is the default distribution channel for Android apps, which provides mobile app users with metrics to identify and report apps quality such as rating, amount of downloads, previous users comments, etc. In addition to those metrics, GP presents a set of top charts that highlight the outstanding apps in different categories. Both metrics and top app charts help developers to identify whether their development decisions are well valued by the community. Therefore, app presence in these top charts is a valuable information when understanding the features of top-apps. In this paper we present Hall-of-Apps, a dataset containing top charts' apps metadata extracted (weekly) from GP, for 4 different countries, during 30 weeks. The data is presented as (i) raw HTML files, (ii) a MongoDB database with all the information contained in app's HTML files (e.g., app description, category, general rating, etc.), and (iii) data visualizations built with the D3.js framework. A first characterization of the data along with the urls to retrieve it can be found in our online appendix: https://thesoftwaredesignlab.github.io/hall-of-apps-tools/
This dataset contains 54,987 UI screenshots and the metadata from 7,748 Android applications belonging to 25 application categories
Download link: https://www.dropbox.com/sh/kfkhevxykzwputb/AAAhL6ipmOg4zZn4jUL_myF0a?dl=0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Playstore Analysis’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/madhav000/playstore-analysis on 30 September 2021.
--- Dataset description provided by original source is as follows ---
Google Play Store team had launched a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.
The problem is to identify the apps that are going to be good for Google to promote. App ratings, which are provided by the customers, is always a great indicator of the goodness of the app. The problem reduces to: predict which apps will have high ratings.
Google Play Store team is about to launch a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.
Dataset: Google Play Store data (“googleplaystore.csv”)
Fields in the data: App: Application name Category: Category to which the app belongs Rating: Overall user rating of the app Reviews: Number of user reviews for the app Size: Size of the app Installs: Number of user downloads/installs for the app Type: Paid or Free Price: Price of the app Content Rating: Age group the app is targeted at - Children / Mature 21+ / Adult Genres: An app can belong to multiple genres (apart from its main category). For example, a musical family game will belong to Music, Game, Family genres. Last Updated: Date when the app was last updated on Play Store Current Ver: Current version of the app available on Play Store Android Ver: Minimum required Android version
--- Original source retains full ownership of the source dataset ---
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
APPS is a benchmark for Python code generation, it includes 10,000 problems, which range from having simple oneline solutions to being substantial algorithmic challenges, for more details please refer to this paper: https://arxiv.org/pdf/2105.09938.pdf.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍
Duolingo is an American educational technology company that produces learning apps and provides language certification. There main app is considered the most popular language learning app in the world.
To progress in their learning journey, each user of the application needs to complete a set of lessons in which they are presented with the words of the language they want to learn. In an infinite set of lessons, each word is applied in a different context and, on top of that, Duolingo uses a spaced repetition approach, where the user sees an already known word again to reinforce their learning.
Each line in this file refers to a Duolingo lesson that had a target word to practice.
The columns are as follows:
p_recall
- proportion of exercises from this lesson/practice where the word/lexeme was correctly recalledtimestamp
- UNIX timestamp of the current lesson/practice delta
- time (in seconds) since the last lesson/practice that included this word/lexemeuser_id
- student user ID who did the lesson/practice (anonymized)learning_language
- language being learnedui_language
- user interface language (presumably native to the student)lexeme_id
- system ID for the lexeme tag (i.e., word)lexeme_string
- lexeme tag (see below)history_seen
- total times user has seen the word/lexeme prior to this lesson/practicehistory_correct
- total times user has been correct for the word/lexeme prior to this lesson/practicesession_seen
- times the user saw the word/lexeme during this lesson/practicesession_correct
- times the user got the word/lexeme correct during this lesson/practiceThe lexeme_string
column contains a string representation of the "lexeme tag" used by Duolingo for each lesson/practice (data instance) in our experiments. The lexeme_string field uses the following format:
`surface-form/lemma
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...