100+ datasets found
  1. s

    Geonames - All Cities with a population > 1000

    • data.smartidf.services
    • public.opendatasoft.com
    • +1more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://data.smartidf.services/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, geojson, json, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  2. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  3. countries of the world

    • kaggle.com
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Cobb (2023). countries of the world [Dataset]. https://www.kaggle.com/datasets/robbcobb/countries
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rob Cobb
    Area covered
    World
    Description

    Copy of https://www.kaggle.com/datasets/kisoibo/countries-databasesqlite

    Updated the name of the table from 'countries of the world' to 'countries', for ease of writing queries.

    Info about the dataset:

    Content

    Table Total Rows Total Columns countries of the world **0 ** ** 20** Country, Region, Population, Area (sq. mi.), Pop. Density (per sq. mi.), Coastline (coast/area ratio), Net migration, Infant mortality (per 1000 births), GDP ($ per capita), Literacy (%), Phones (per 1000), Arable (%), Crops (%), Other (%), Climate, Birthrate, Deathrate, Agriculture, Industry, Service

    Acknowledgements

    Acknowledgements Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission." https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html

    Inspiration

    When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.

  4. World Bank: Education Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: Education Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-intl-education
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population

    http://data.worldbank.org/data-catalog/ed-stats

    https://cloud.google.com/bigquery/public-data/world-bank-education

    Citation: The World Bank: Education Statistics

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    Of total government spending, what percentage is spent on education?

  5. f

    Global Welfare Dataset (GLOW)

    • figshare.com
    xlsx
    Updated Nov 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emerging Welfare Markets Project (2020). Global Welfare Dataset (GLOW) [Dataset]. http://doi.org/10.6084/m9.figshare.13220807.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 11, 2020
    Dataset provided by
    figshare
    Authors
    Emerging Welfare Markets Project
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Global Welfare Dataset (GLOW) is a cross-national panel dataset that aims at facilitating comparative social policy research on the Global North and Global South. The database includes 381 variables on 61 countries from years between 1989 and 2015. The database has four main categories of data: welfare, development, economy and politics.The data is the result of an original data compilation assembled by using information from several international and domestic sources. Missing data was supplemented by domestic sources where available. We sourced data primarily from these international databases:Atlas of Social Protection Indicators of Resilience and Equity – ASPIRE (World Bank)Government Finance Statistics (International Monetary Fund)Social Expenditure Database – SOCX (Organisation for Economic Co-operation and Development)Social Protection Statistics – ESPROSS (Eurostat)Social Security Inquiry (International Labour Organization)Social Security Programs Throughout the World (Social Security Administration)Statistics on Income and Living Conditions – EU-SILC (European Union)World Development Indicators (World Bank)However, much of the welfare data from these sources are not compatible between all country cases. We conducted an extensive review of the compatibility of the data and computed compatible figures where possible. Since the heart of this database is the provision of social assistance across a global sample, we applied the ASPIRE methodology in order to build comparable indicators across European and Emerging Market economies. Specifically, we constructed indicators of average per capita transfers and coverage rates for social assistance programs for all the country cases not included in the World Bank’s ASPIRE dataset (Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Luxembourg, Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, and United Kingdom.)For details, please see:https://glow.ku.edu.tr/about

  6. Global Economy Indicators

    • kaggle.com
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2023). Global Economy Indicators [Dataset]. https://www.kaggle.com/datasets/prasad22/global-economy-indicators/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    Kaggle
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Data Set Information:

    The dataset is compiled from the National Accounts Main Aggregates Database that presents a series of analytical national accounts tables from 1970 onwards for more than 200 countries and areas of the world. It is the product of a global cooperation effort between the Economic Statistics Branch of the United Nations Statistics Division, international statistical agencies, and the national statistical services of these countries and is developed in accordance with the recommendation of the Statistical Commission at its first session in 1947 that the Statistics Division should publish regularly the most recent available data on national accounts for as many countries and areas as possible.

    This dataset can be used to perform clustering, regression, and time series tasks.

  7. h

    world_model_raw_data

    • huggingface.co
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    1X (2024). world_model_raw_data [Dataset]. https://huggingface.co/datasets/1x-technologies/world_model_raw_data
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    1X
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Raw Dataset for the 1X World Model Sammpling Challenge. Download with: huggingface-cli download 1x-technologies/worldmodel_raw_data --repo-type dataset --local-dir data

      Train/Val v2.0
    

    The training dataset is shareded into 100 independent shards. The definitions are as follows:

    video_{shard}.mp4: Raw video with a resolution of 512x512. segment_idx_{shard}.bin - Maps each frame i to its corresponding segment index. You may want to use this to separate non-contiguous frames from… See the full description on the dataset page: https://huggingface.co/datasets/1x-technologies/world_model_raw_data.

  8. A

    ‘Countries of the World’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Countries of the World’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-countries-of-the-world-00c4/2cca4656/?iid=005-843&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Analysis of ‘Countries of the World’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/fernandol/countries-of-the-world on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    World fact sheet, fun to link with other datasets.

    Content

    Information on population, region, area size, infant mortality and more.

    Acknowledgements

    Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission."
    https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html

    Inspiration

    When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.

    --- Original source retains full ownership of the source dataset ---

  9. o

    GeoPolHist dataset

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Mar 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Béatrice Dedinger; Paul Girard (2021). GeoPolHist dataset [Dataset]. http://doi.org/10.5281/zenodo.4600808
    Explore at:
    Dataset updated
    Mar 12, 2021
    Authors
    Béatrice Dedinger; Paul Girard
    Description

    GeoPolHist is a dataset that focuses on the questions “what is a country?” and “how many countries are there in the world?” Created from the lists of states and dependencies built by the Correlates of War project, GeoPolHist provides a dataset and visual documentation that identifies the political status of each of the geopolitical entities that existed in the world since 1816. It allows for an approach of the political history of the world based on the dichotomy between sovereign and non-sovereign entities. This work was funded by the Fondation Del Duca.

  10. e

    Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Jul 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Global - Roads Open Access Data Set - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/global-roads-open-access-data-set-2010
    Explore at:
    Dataset updated
    Jul 25, 2018
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.

  11. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  12. ISLSCP II Global Population of the World - Dataset - NASA Open Data Portal

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). ISLSCP II Global Population of the World - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/islscp-ii-global-population-of-the-world-7eeb1
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Earth, World
    Description

    Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps: * Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years. * Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years. * Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added. * The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years. * Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.

  13. d

    Global Population Density Grid Time Series Estimates

    • catalog.data.gov
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Population Density Grid Time Series Estimates [Dataset]. https://catalog.data.gov/dataset/global-population-density-grid-time-series-estimates
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.

  14. World Economic Outlook Data

    • kaggle.com
    Updated Jul 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rishabh Mahajan (2022). World Economic Outlook Data [Dataset]. https://www.kaggle.com/datasets/rishabhmahajan011/world-economic-outlook-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 16, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rishabh Mahajan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The World Economic Outlook (WEO) database contains selected macroeconomic data series from the statistical appendix of the World Economic Outlook report, which presents the IMF staff's analysis and projections of economic developments at the global level, in major country groups and in many individual countries.

  15. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 12, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  16. d

    US Restaurant POI dataset with metadata

    • datarade.ai
    .csv
    Updated Jul 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geolytica (2022). US Restaurant POI dataset with metadata [Dataset]. https://datarade.ai/data-products/us-restaurant-poi-dataset-with-metadata-geolytica
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 30, 2022
    Dataset authored and provided by
    Geolytica
    Area covered
    United States of America
    Description

    Point of Interest (POI) is defined as an entity (such as a business) at a ground location (point) which may be (of interest). We provide high-quality POI data that is fresh, consistent, customizable, easy to use and with high-density coverage for all countries of the world.

    This is our process flow:

    Our machine learning systems continuously crawl for new POI data
    Our geoparsing and geocoding calculates their geo locations
    Our categorization systems cleanup and standardize the datasets
    Our data pipeline API publishes the datasets on our data store
    

    A new POI comes into existence. It could be a bar, a stadium, a museum, a restaurant, a cinema, or store, etc.. In today's interconnected world its information will appear very quickly in social media, pictures, websites, press releases. Soon after that, our systems will pick it up.

    POI Data is in constant flux. Every minute worldwide over 200 businesses will move, over 600 new businesses will open their doors and over 400 businesses will cease to exist. And over 94% of all businesses have a public online presence of some kind tracking such changes. When a business changes, their website and social media presence will change too. We'll then extract and merge the new information, thus creating the most accurate and up-to-date business information dataset across the globe.

    We offer our customers perpetual data licenses for any dataset representing this ever changing information, downloaded at any given point in time. This makes our company's licensing model unique in the current Data as a Service - DaaS Industry. Our customers don't have to delete our data after the expiration of a certain "Term", regardless of whether the data was purchased as a one time snapshot, or via our data update pipeline.

    Customers requiring regularly updated datasets may subscribe to our Annual subscription plans. Our data is continuously being refreshed, therefore subscription plans are recommended for those who need the most up to date data. The main differentiators between us vs the competition are our flexible licensing terms and our data freshness.

    Data samples may be downloaded at https://store.poidata.xyz/us

  17. Data from: World Database on Protected Areas

    • niue-data.sprep.org
    • pacificdata.org
    • +13more
    geojson, jpeg, pdf +2
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment World Conservation Monitoring Centre (UNEP-WCMC) (2022). World Database on Protected Areas [Dataset]. https://niue-data.sprep.org/dataset/world-database-protected-areas
    Explore at:
    jpeg, pdf, zip, geojson, websiteAvailable download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    UN Environment World Conservation Monitoring Centre (UNEP-WCMC)
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    190.4057264328 -18.899790361257, 190.35354137421 -19.257997699831, POLYGON ((190.02669811249 -18.788017437046, 189.88662242889 -18.902388845384, 190.3178358078 -18.806218097545, 189.90584850311 -19.263183400865, 190.09261608124 -19.359089245934, 190.43593883514 -19.03745430341, 190.40847301483 -19.141276144722, 190.21071910858 -19.343540769982, Niue
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management.

    The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable.

    Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets.

    Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary.

    The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.

  18. Global Green Economy Index (GGEI)

    • kaggle.com
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Tamanini (2024). Global Green Economy Index (GGEI) [Dataset]. https://www.kaggle.com/datasets/jeremytamanini/global-green-economy-index-ggei
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 8, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeremy Tamanini
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    For the first time, the full results from the Global Green Economy Index (GGEI) are available in the public domain. Historically, only the aggregate results have been publicly accessible. The full dataset has been paywalled and accessible to our subscribers only. But the way in which we release GGEI data to the public is changing. Read on for a quick explanation for how and why.

    First, the how. The GGEI file publicly accessible today represents that dataset officially compiled in 2022. It contains the full results for each of the 18 indicators in the GGEI for 160 countries, across the four main dimensions of climate change & social equity, sector decarbonization, markets & ESG investment and the environment. Some (not all) of these data points have since been updated, as new datasets have been published. The GGEI is a dynamic model, updating in real-time as new data becomes available. Our subscribing clients will still receive this most timely version of the model, along with any customizations they may request.

    Now, the why. First and foremost, there is huge demand among academic researchers globally for the full GGEI dataset. Academic inquiry around the green transition, sustainable development, ESG investing, and green energy systems has exploded over the past several years. We receive hundreds of inquiries annually from these students and researchers to access the full GGEI dataset. Making it publicly accessible as we are today makes it easier for these individuals and institutions to use these GGEI to promote learning and green progress within their institutions.

    More broadly, the landscape for data has changed significantly. A decade ago when the GGEI was first published, datasets existed more in silos and users might subscribe to one specific dataset like the GGEI to answer a specific question. But today, data usage in the sustainability space has become much more of a system, whereby myriad data sources are synthesized into increasingly sophisticated models, often fueled by artificial intelligence. Making the GGEI more accessible will accelerate how this perspective on the global green economy can be integrated to these systems.

  19. a

    World Countries

    • hub.arcgis.com
    • fesec-cesj.opendata.arcgis.com
    Updated Feb 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2017). World Countries [Dataset]. https://hub.arcgis.com/datasets/CESJ::world-countries/about
    Explore at:
    Dataset updated
    Feb 12, 2017
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    World,
    Description

    World Countries is a detailed layer of country level boundaries which is best used at large scales (e.g. below 1:2m scale). For a more generalized layer to use at small-to-medium scales, refer to the World Countries (Generalized) layer. It has been designed to be used as a layer that can be easily edited to fit a users needs and view of the political world. Included are attributes for name and ISO codes, along with continent information. Particularly useful are the Land Type and Land Rank fields which separate polygons based on their areal size. These attributes are useful for rendering at different scales by providing the ability to turn off small islands which may clutter small scale views.This dataset represents the world countries as they existed in January 2015.

  20. d

    Real-World Fuel Efficiency

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Real-World Fuel Efficiency [Dataset]. https://catalog.data.gov/dataset/real-world-fuel-efficiency
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This is a report of city vehicles and actual MPG compared to EPA estimated MPG. Each line of data is a combination of all the active vehicles on the city’s telematics system broken down into year/make/model/standard type with fueling and usage data. The intent is for each line to represent the sticker MPG and the real-world MPG and how these compare to each other. The report can be found at https://www1.nyc.gov/assets/dcas/downloads/pdf/fleet/NYC-Fleet-Newsletter-306-May-27-2020-Hybrids-Work-Even-Better-in-Reality-Than-in-Theory.pdf.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Geonames - All Cities with a population > 1000 [Dataset]. https://data.smartidf.services/explore/dataset/geonames-all-cities-with-a-population-1000/

Geonames - All Cities with a population > 1000

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
csv, geojson, json, excelAvailable download formats
Dataset updated
Mar 10, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

Search
Clear search
Close search
Google apps
Main menu