22 datasets found
  1. N

    Black Earth Town, Wisconsin Population Breakdown By Race (Excluding...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Black Earth Town, Wisconsin Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2dae2659-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Black Earth town by race. It includes the population of Black Earth town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Black Earth town across relevant racial categories.

    Key observations

    The percent distribution of Black Earth town population by race (across all racial categories recognized by the U.S. Census Bureau): 95.40% are white, 2.63% are Asian and 1.97% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Black Earth town
    • Population: The population of the racial category (excluding ethnicity) in the Black Earth town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Black Earth town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth town Population by Race & Ethnicity. You can refer the same here

  2. Population development of China 0-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population development of China 0-2100 [Dataset]. https://www.statista.com/statistics/1304081/china-population-development-historical/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.

  3. d

    WIPNZ2007: World Internet Project New Zealand Benchmark Survey - Dataset -...

    • catalogue.data.govt.nz
    Updated Jul 2, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). WIPNZ2007: World Internet Project New Zealand Benchmark Survey - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/oai-figshare-com-article-2001207
    Explore at:
    Dataset updated
    Jul 2, 2015
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    Since 2007, the Institute of Culture, Discourse, and Communication (ICDC) at AUT University, has been conducting a long-term survey to track trends in Internet use, and to document the role and impact of the Internet in New Zealand society. The Internet has changed how business and trade deals are made; how schools and other academic institutions, councils, media, and advertisers operate. The Internet also impacts on family interaction, the ways in which people form new friendships, and the communities to which people belong.The World Internet Project New Zealand is an extensive research project that aims to provide important information about the social, cultural, political, and economic influence of the Internet and related digital technologies. As part of the World Internet Project International, a collaborative research effort, WIP NZ enables valid and rigorous comparison between New Zealand and 30 other countries around the world. Each partner country in WIP shares a set of 30 common questions.ICDC's longitudinal survey includes a cross-section of participants aged 12 and up, from across New Zealand. A quota ensures that people of Māori, Pasifika, and Asian descent, and the range of age groups, are not underrepresented. The survey investigates Internet access and targets Internet users as well as non-users; it looks at who uses this technology and what they do online. It also considers offline activities such as how much time is spent with friends and family. Other questions address issues such as the effects of the Internet on language use and cultural development; the role of the Internet in accessing information or purchasing products; and how the Internet affects the educational and social development of New Zealand children. In addition to studying the impact of the Internet, the survey tracks the effectiveness of strategies to address issues such as the digital divide between rich and poor, or urban and rural.

  4. N

    Blue Earth City Township, Minnesota Population Breakdown By Race (Excluding...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Blue Earth City Township, Minnesota Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2daf957d-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth City Township
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Blue Earth City township by race. It includes the population of Blue Earth City township across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Blue Earth City township across relevant racial categories.

    Key observations

    The percent distribution of Blue Earth City township population by race (across all racial categories recognized by the U.S. Census Bureau): 99.36% are white, 0.21% are American Indian and Alaska Native, 0.21% are Asian and 0.21% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Blue Earth City township
    • Population: The population of the racial category (excluding ethnicity) in the Blue Earth City township is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Blue Earth City township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth City township Population by Race & Ethnicity. You can refer the same here

  5. S

    National and provincial population and economy projection databases under...

    • scidb.cn
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo (2024). National and provincial population and economy projection databases under Shared Socioeconomic Pathways(SSP1-5)_v2 [Dataset]. http://doi.org/10.57760/sciencedb.01683
    Explore at:
    Dataset updated
    Apr 28, 2024
    Dataset provided by
    ScienceDB
    Authors
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    V1 dataset:Under the global framework of Shared Socioeconomic Pathways (SSPs), based on localized population and economic parameters, a Population Development Environment (PDE) model is adopted to construct population grid data for SSPs from 2020 to 2100; Using the Cobb Douglas model, construct economic data for SSPs from 2020 to 2100.The v1 dataset includes:Population grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5°GDP grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5 °Grid data on the output value of three industries in the Chinese region, with a spatial resolution of 0.1 °V2 dataset:Based on the data from the 7th National Population Census of China, starting from 2020, the parameters such as fertility rate, mortality rate, migration rate, and education level in the Population Development Environment (PDE) model were updated. Under the Shared Socioeconomic Pathways (SSP1-5), a new version (v2) of the total population and age and gender specific population projection dataset for China and its provinces from 2020 to 2100 was created. Based on the data from the 7th National Population Census and the 4th Economic Census of China, with 2020 as the starting year, the parameters of total factor productivity, capital stock, labor input, and capital elasticity coefficient in the Cobb Douglas model were updated. Under the shared SSP1-5, a new version (v2) of China and its provincial GDP projectiondataset from 2020 to 2100 was created.The v2 (2024 version) dataset includes:Total Population Data of China and Provinces (2020-2100)Population data by age and gender in China (2020-2100)China and Provincial GDP Data (2020-2100)

  6. Mobile internet users in Southeast Asia 2010-2029

    • statista.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mobile internet users in Southeast Asia 2010-2029 [Dataset]. https://www.statista.com/topics/9093/internet-usage-in-southeast-asia/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    South East Asia, Asia
    Description

    The number of smartphone users in Southeast Asia was forecast to continuously increase between 2024 and 2029 by in total 105.9 million users (+23.9 percent). After the nineteenth consecutive increasing year, the smartphone user base is estimated to reach 548.92 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Western Asia and Southern Asia.

  7. N

    Black Earth, WI Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Black Earth, WI Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2dae2883-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Black Earth by race. It includes the population of Black Earth across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Black Earth across relevant racial categories.

    Key observations

    The percent distribution of Black Earth population by race (across all racial categories recognized by the U.S. Census Bureau): 94.39% are white, 0.18% are Black or African American, 0.53% are Asian and 4.90% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Black Earth
    • Population: The population of the racial category (excluding ethnicity) in the Black Earth is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Black Earth total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth Population by Race & Ethnicity. You can refer the same here

  8. GMP2: Asia and Pacific - Dataset - Data Catalogue

    • ckan.recetox.cz
    Updated Oct 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.recetox.cz (2022). GMP2: Asia and Pacific - Dataset - Data Catalogue [Dataset]. https://ckan.recetox.cz/dataset/gmp2-asia-and-pacific
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    Research Centre for Toxic Compounds in the Environment
    CKANhttps://ckan.org/
    Area covered
    Asia–Pacific
    Description

    Data from Asia and Pacific contains information on POPs concentrations in ambient air, human tissue - breast milk and surface water; for water-soluble fluorinated POPs only (perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride). The data was mainly collected over the period between 2008 and 2014. However, some earlier data related to the historical importance were presented and briefly described. Asia-Pacific Region is located in tropical, sub-tropical temperate and sub-arctic climate area, with many countries under the strong influence of the monsoon climate. The region is characterized by huge agricultural and industrial activities to support large number of people, about 59% of the world population. In the Asia-Pacific Region, several international and national POPs monitoring programmes on air and human milk are available. For the air, passive sampling was conducted in Fiji in collaboration with RECETOX (Centre of Excellence in Environmental Chemistry and Ecotoxicology, Brno, Czech Republic). In POPs Monitoring Project in East Asian Countries which is initiated by Japan, sampling was operated in ten countries (Cambodia, Indonesia, Japan, Republic of Korea, Lao PDR, Malaysia, Mongolia, Philippines, Thailand and Vietnam). In China and Japan, some ambient POPs air monitoring programmes are performed. For human milk, China (including Hong Kong SAR of China), Fiji, Kiribati, Philippines and Tonga have been involved in 3rd or 4th round WHO human milk survey. China, India and Japan also have some national POPs monitoring programmes on human milk and/or blood. In addition to data on core media, the monitoring data on non-core media, such as water, were also collected. The region collaborated with the following programmes and strategic partners to obtain data on core media: • Chemicals in Environment (Ministry of the Environment, Japan) • China National POPs Monitoring • Environmental Survey of Dioxins (Ministry of the Environment, Japan) • GMP UNEP - WHO Milk Survey • POPs Monitoring Project in East Asian Countries • UNU (United Nations University, Japan) • PFOS in water around Bangkok, data in paper of Boontanon et al. (2013)

  9. N

    Blue Earth County, MN Population Breakdown By Race (Excluding Ethnicity)...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Blue Earth County, MN Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2daf9929-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth County
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Blue Earth County by race. It includes the population of Blue Earth County across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Blue Earth County across relevant racial categories.

    Key observations

    The percent distribution of Blue Earth County population by race (across all racial categories recognized by the U.S. Census Bureau): 87.83% are white, 4.66% are Black or African American, 0.16% are American Indian and Alaska Native, 2.49% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 1.23% are some other race and 3.59% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Blue Earth County
    • Population: The population of the racial category (excluding ethnicity) in the Blue Earth County is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Blue Earth County total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Blue Earth County Population by Race & Ethnicity. You can refer the same here

  10. Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup, Inc. (2022). Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more [Dataset]. https://datacatalog.ihsn.org/catalog/8494
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Gallup, Inc.http://gallup.com/
    Time period covered
    2005 - 2012
    Area covered
    Albania, Afghanistan, Angola
    Description

    Abstract

    Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.

    Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.

    Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.

    The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.

    FACE-TO-FACE SURVEY DESIGN

    FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.

    There are two methods for sample stratification:

    METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000

    The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8

    METHOD 2:

    A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.

    SECOND STAGE

    Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.

    THIRD STAGE

    Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.

    TELEPHONE SURVEY DESIGN

    In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.

    PANEL SURVEY DESIGN

    Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9

    Research instrument

    QUESTION DESIGN

    Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.

    The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.

    Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.

    The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.

    METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.

    METHOD 2: A translator

  11. U

    Rare Earth Element Occurrence Database of the Tien Shan Region, Central Asia...

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Mihalasky (2024). Rare Earth Element Occurrence Database of the Tien Shan Region, Central Asia [Dataset]. http://doi.org/10.5066/F7TM7913
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Mark Mihalasky
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2016
    Area covered
    Tian Shan, Central Asia
    Description

    Central Asia, site of the historic Silk Road trade network, has long been a conduit for the movement of people, energy, and mineral resources between Europe and Asia. Once part of the former Soviet Union, this region was and continues to be an important producer of base and precious metals, rare metals (RM), including niobium, tantalum, and beryllium, and a past producer of rare earth elements (REE). The Tien Shan and Pamir Mountains regions, encompassing parts of Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan, are of significant interest for mineral exploration as these regions are thought to host substantial undeveloped and undiscovered resources of REE and RM. Based on this legacy, and as an emerging REE and RM producing region, the Central Asian countries are implementing mining sector reforms to create a more attractive investment environment for domestic and foreign mining interests. During the most recent increase in REE prices, beginning in 2009 and cu ...

  12. i

    Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China,...

    • catalog.ihsn.org
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China, Indonesia, India, Japan, Cambodia, Korea, Rep., Sri Lanka, Mongolia, Ma [Dataset]. https://catalog.ihsn.org/catalog/3001
    Explore at:
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    East Asia Democratic Studies
    Institute of Political Science
    Time period covered
    2010 - 2011
    Area covered
    Cambodia, India, Mongolia, Japan, China, Indonesia, Sri Lanka, South Korea, Hong Kong
    Description

    Abstract

    The third wave of the Asian Barometer survey (ABS) conducted in 2010 and the database contains nine countries and regions in East Asia - the Philippines, Taiwan, Thailand, Mongolia, Singapore, Vietnam, Indonesia, Malaysia and South Korea. The ABS is an applied research program on public opinion on political values, democracy, and governance around the region. The regional network encompasses research teams from 13 East Asian political systems and 5 South Asian countries. Together, this regional survey network covers virtually all major political systems in the region, systems that have experienced different trajectories of regime evolution and are currently at different stages of political transition.

    The mission and task of each national research team are to administer survey instruments to compile the required micro-level data under a common research framework and research methodology to ensure that the data is reliable and comparable on the issues of citizens' attitudes and values toward politics, power, reform, and democracy in Asia.

    The Asian Barometer Survey is headquartered in Taipei and co-hosted by the Institute of Political Science, Academia Sinica and The Institute for the Advanced Studies of Humanities and Social Sciences, National Taiwan University.

    Geographic coverage

    13 East Asian political systems: Japan, Mongolia, South Koreas, Taiwan, Hong Kong, China, the Philippines, Thailand, Vietnam, Cambodia, Singapore, Indonesia, and Malaysia; 5 South Asian countries: India, Pakistan, Bangladesh, Sri Lanka, and Nepal

    Analysis unit

    -Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Compared with surveys carried out within a single nation, cross-nation survey involves an extra layer of difficulty and complexity in terms of survey management, research design, and database modeling for the purpose of data preservation and easy analysis. To facilitate the progress of the Asian Barometer Surveys, the survey methodology and database subproject is formed as an important protocol specifically aiming at overseeing and coordinating survey research designs, database modeling, and data release.

    As a network of Global Barometer Surveys, Asian Barometer Survey requires all country teams to comply with the research protocols which Global Barometer network has developed, tested, and proved practical methods for conducting comparative survey research on public attitudes.

    Research Protocols:

    • National probability samples that give every citizen in each country an equal chance of being selected for interview. Whether using census household lists or a multistage area approach, the method for selecting sampling units is always randomized. The samples may be stratified, or weights applied, to ensure coverage of rural areas and minority populations in their correct proportions. As such, Asian Barometer samples represent the adult, voting-age population in each country surveyed.

    A model Asian Barometer Survey has a sample size of 1,200 respondents, which allows a minimum confidence interval of plus or minus 3 percent at 95 percent probability.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A standard questionnaire instrument containing a core module of identical or functionally equivalent questions. Wherever possible, theoretical concepts are measured with multiple items in order to enable testing for construct validity. The wording of items is determined by balancing various criteria, including: the research themes emphasized in the survey, the comprehensibility of the item to lay respondents, and the proven effectiveness of the item when tested in previous surveys.

    Survey Topics: 1.Economic Evaluations: What is the economic condition of the nation and your family: now, over the last five years, and in the next five years? 2.Trust in institutions: How trustworthy are public institutions, including government branches, the media, the military, and NGOs. 3.Social Capital: Membership in private and public groups, the frequency and degree of group participation, trust in others, and influence of guanxi. 4.Political Participatio: Voting in elections, national and local, country-specific voting patterns, and active participation in the political process as well as demonstrations and strikes. Contact with government and elected officials, political organizations, NGOs and media. 5.Electoral Mobilization: Personal connections with officials, candidates, and political parties; influence on voter choice. 6.Psychological Involvement and Partisanship: Interest in political news coverage, impact of government policies on daily life, and party allegiance. 7.Traditionalism: Importance of consensus and family, role of the elderly, face, and woman in theworkplace. 8.Democratic Legitimacy and Preference for Democracy: Democratic ranking of present and previous regime, and expected ranking in the next five years; satisfaction with how democracy works, suitability of democracy; comparisons between current and previous regimes, especially corruption; democracy and economic development, political competition, national unity, social problems, military government, and technocracy. 9.Efficacy, Citizen Empowerment, System Responsiveness: Accessibility of political system: does a political elite prevent access and reduce the ability of people to influence the government. 10.Democratic vs. Authoritarian Values: Level of education and political equality, government leadership and superiority, separation of executive and judiciary. 11.Cleavage: Ownership of state-owned enterprises, national authority over local decisions, cultural insulation, community and the individual. 12.Belief in Procedural Norms of Democracy: Respect of procedures by political leaders: compromise, tolerance of opposing and minority views. 13.Social-Economic Background Variables: Gender, age, marital status, education level, years of formal education, religion and religiosity, household, income, language and ethnicity. 14.Interview Record: Gender, age, class, and language of the interviewer, people present at the interview; did the respondent: refuse, display impatience, and cooperate; the language or dialect spoken in interview, and was an interpreter present.

    Cleaning operations

    Quality checks are enforced at every stage of data conversion to ensure that information from paper returns is edited, coded, and entered correctly for purposes of computer analysis. Machine readable data are generated by trained data entry operators and a minimum of 20 percent of the data is entered twice by independent teams for purposes of cross-checking. Data cleaning involves checks for illegal and logically inconsistent values.

  13. Number of internet users SEA 2014-2029

    • statista.com
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of internet users SEA 2014-2029 [Dataset]. https://www.statista.com/topics/9093/internet-usage-in-southeast-asia/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The number of internet users in Southeast Asia was forecast to continuously increase between 2024 and 2029 by 86.4 million users (+15.32 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach a new peak at 650.4 million in 2029. Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the data source clarifies, connection quality and usage frequency are distinct aspects, not taken into account here. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic, and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press, and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like Central Asia and Eastern Asia.

  14. T

    GDP PER CAPITA by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP PER CAPITA by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/gdp-per-capita?continent=asia
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for GDP PER CAPITA reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  15. f

    Table_1_Selling World Health Organization's Alcohol “Best Buys” and Other...

    • figshare.com
    • frontiersin.figshare.com
    docx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiazhou Yu; Dong Dong; Timothy S. Sumerlin; William B. Goggins; Qi Feng; Jean H. Kim (2023). Table_1_Selling World Health Organization's Alcohol “Best Buys” and Other Recommended Interventions in an Urban Chinese Population: Public Acceptability of Alcohol Harms Reduction Strategies in Hong Kong.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2022.855416.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Jiazhou Yu; Dong Dong; Timothy S. Sumerlin; William B. Goggins; Qi Feng; Jean H. Kim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hong Kong
    Description

    BackgroundTo counter the harms caused by alcohol use, the World Health Organization (WHO) outlined a series of evidence-based recommendations, including the highly cost-effective “Best Buys” recommendations. While many Western countries have been actively introducing alcohol harms reduction strategies, it is unclear whether these cost-effective policies would be publicly acceptable in Asian regions with traditionally low alcohol consumption. This study examines the public acceptability of WHO-recommended alcohol harms reduction strategies in an Asian city with few extant alcohol regulations.MethodsA cross-sectional telephone survey of Hong Kong Chinese residents aged 18–74 (n = 4,000) was conducted from January to August 2018. Respondents were asked about their perceptions of various WHO-recommended strategies and consequences of their implementation. After reducing the strategies into several policy categories by principal component analysis, multivariable linear regression was performed to identify factors associated with endorsement of the various policies.ResultsAmong the “Best Buys”, introduction of moderate beer/wine taxes (68.7%) and shortened alcohol retail hours (51.9%) were the most supported while bans on event sponsorships (19.5%) and public drinking events (17.7%) were the least popular. Strategies targeting young drinkers were particularly highly supported. Males, younger adults, Non-abstainers, and those who believed in drinking's social benefits were less likely to endorse stringent control measures (p < 0.05). Adults with higher household income were less supportive, partially due to concerns about infringements on local economy, lifestyles, and economic freedom. Women and older people were generally more supportive, partially because they perceived these policies would lower alcohol-related harms.ConclusionIn order to reduce barriers to implementing WHO-recommended strategies in the region, it is imperative to increase awareness of alcohol-related harms and to strengthen beliefs in the effectiveness of these countermeasures, especially among men, young adults, and drinkers.

  16. Number of missing persons files in the U.S. 2022, by race

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Number of missing persons files in the U.S. 2022, by race [Dataset]. https://www.statista.com/statistics/240396/number-of-missing-persons-files-in-the-us-by-race/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.

    What is the NCIC?

    The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.

    Missing people in the United States

    A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.

  17. N

    White Earth Township, Minnesota Population Breakdown By Race (Excluding...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth Township, Minnesota Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2e94df16-230c-11ef-bd92-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    White Earth Township, Minnesota
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of White Earth township by race. It includes the population of White Earth township across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of White Earth township across relevant racial categories.

    Key observations

    The percent distribution of White Earth township population by race (across all racial categories recognized by the U.S. Census Bureau): 28.29% are white, 49.55% are American Indian and Alaska Native, 0.40% are Asian and 21.76% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the White Earth township
    • Population: The population of the racial category (excluding ethnicity) in the White Earth township is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of White Earth township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth township Population by Race & Ethnicity. You can refer the same here

  18. Mobile internet usage reach in North America 2020-2029

    • statista.com
    • flwrdeptvarieties.store
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet usage reach in North America 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.

  19. N

    Lincoln township, Blue Earth County, Minnesota Population Breakdown By Race...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Lincoln township, Blue Earth County, Minnesota Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lincoln-township-blue-earth-county-mn-population-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth County, Lincoln Township, Minnesota
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Lincoln township by race. It includes the population of Lincoln township across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Lincoln township across relevant racial categories.

    Key observations

    The percent distribution of Lincoln township population by race (across all racial categories recognized by the U.S. Census Bureau): 97.03% are white, 0.50% are Asian and 2.48% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Lincoln township
    • Population: The population of the racial category (excluding ethnicity) in the Lincoln township is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Lincoln township total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lincoln township Population by Race & Ethnicity. You can refer the same here

  20. N

    White Earth, ND median household income breakdown by race betwen 2013 and...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). White Earth, ND median household income breakdown by race betwen 2013 and 2023 [Dataset]. https://www.neilsberg.com/insights/white-earth-nd-median-household-income-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    White Earth, North Dakota
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2013 to 2023. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in White Earth. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In White Earth, the median household income for the households where the householder is White increased by $13,021(25.58%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $50,908 in 2013 and $63,929 in 2023.
    • Black or African American: As per the U.S. Census Bureau population data, in White Earth, there are no households where the householder is Black or African American; hence, the median household income for the Black or African American population is not applicable.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in White Earth.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • 2023: 2023 median household income
    • Please note: All incomes have been adjusted for inflation and are presented in 2023-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Black Earth Town, Wisconsin Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/2dae2659-230c-11ef-bd92-3860777c1fe6/

Black Earth Town, Wisconsin Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition

Explore at:
json, csvAvailable download formats
Dataset updated
Jul 7, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Black Earth
Variables measured
Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the population of Black Earth town by race. It includes the population of Black Earth town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Black Earth town across relevant racial categories.

Key observations

The percent distribution of Black Earth town population by race (across all racial categories recognized by the U.S. Census Bureau): 95.40% are white, 2.63% are Asian and 1.97% are multiracial.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

Racial categories include:

  • White
  • Black or African American
  • American Indian and Alaska Native
  • Asian
  • Native Hawaiian and Other Pacific Islander
  • Some other race
  • Two or more races (multiracial)

Variables / Data Columns

  • Race: This column displays the racial categories (excluding ethnicity) for the Black Earth town
  • Population: The population of the racial category (excluding ethnicity) in the Black Earth town is shown in this column.
  • % of Total Population: This column displays the percentage distribution of each race as a proportion of Black Earth town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Black Earth town Population by Race & Ethnicity. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu