Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Boomer nation : the largest and richest generation ever, and how it changed America. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper illustrates, based on an example, the importance of consistency between empirical measurement and the concept of variables in estimated macroeconomic models. Since standard New Keynesian models do not account for demographic trends and sectoral shifts, I propose adjusting hours worked per capita used to estimate such models accordingly to enhance the consistency between the data and the model. Without this adjustment, low-frequency shifts in hours lead to unreasonable trends in the output gap, caused by the close link between hours and the output gap in such models. The retirement wave of baby boomers, for example, lowers US aggregate hours per capita, which leads to erroneous permanently negative output gap estimates following the Great Recession. After correcting hours for changes in the age composition, the estimated output gap closes gradually instead following the years after the Great Recession.
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and identifying the transport pathways and sinks of sediment, geoscientists are developing conceptual models of the present-day physical processes shaping the South Carolina coast. The primary objectives of this research effort are: 1) to provide a regional synthesis of the shallow geologic framework underlying the coastal upland, shoreface and inner continental shelf, and define its role in coastal evolution and modern beach behavior; 2) to identify and model the physical processes affecting coastal ocean circulation and sediment transport, and to define their role in shaping the modern shoreline; and 3) to identify sediment sources and transport pathways; leading to construction of a regional sediment budget.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for BOOM (Benchmark of Observability Metrics)
Dataset Summary
BOOM (Benchmark of Observability Metrics) is a large-scale, real-world time series dataset designed for evaluating models on forecasting tasks in complex observability environments. Composed of real-world metrics data collected from Datadog, a leading observability platform, the benchmark captures the irregularity, structural complexity, and heavy-tailed statistics typical of production… See the full description on the dataset page: https://huggingface.co/datasets/Datadog/BOOM.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This directory contains data behind the story How Baby Boomers Get High. It covers 13 drugs across 17 age groups.
Source: National Survey on Drug Use and Health from the Substance Abuse and Mental Health Data Archive.
Header | Definition |
---|---|
alcohol-use | Percentage of those in an age group who used alcohol in the past 12 months |
alcohol-frequency | Median number of times a user in an age group used alcohol in the past 12 months |
marijuana-use | Percentage of those in an age group who used marijuana in the past 12 months |
marijuana-frequency | Median number of times a user in an age group used marijuana in the past 12 months |
cocaine-use | Percentage of those in an age group who used cocaine in the past 12 months |
cocaine-frequency | Median number of times a user in an age group used cocaine in the past 12 months |
crack-use | Percentage of those in an age group who used crack in the past 12 months |
crack-frequency | Median number of times a user in an age group used crack in the past 12 months |
heroin-use | Percentage of those in an age group who used heroin in the past 12 months |
heroin-frequency | Median number of times a user in an age group used heroin in the past 12 months |
hallucinogen-use | Percentage of those in an age group who used hallucinogens in the past 12 months |
hallucinogen-frequency | Median number of times a user in an age group used hallucinogens in the past 12 months |
inhalant-use | Percentage of those in an age group who used inhalants in the past 12 months |
inhalant-frequency | Median number of times a user in an age group used inhalants in the past 12 months |
pain-releiver-use | Percentage of those in an age group who used pain relievers in the past 12 months |
pain-releiver-frequency | Median number of times a user in an age group used pain relievers in the past 12 months |
oxycontin-use | Percentage of those in an age group who used oxycontin in the past 12 months |
oxycontin-frequency | Median number of times a user in an age group used oxycontin in the past 12 months |
tranquilizer-use | Percentage of those in an age group who used tranquilizer in the past 12 months |
tranquilizer-frequency | Median number of times a user in an age group used tranquilizer in the past 12 months |
stimulant-use | Percentage of those in an age group who used stimulants in the past 12 months |
stimulant-frequency | Median number of times a user in an age group used stimulants in the past 12 months |
meth-use | Percentage of those in an age group who used meth in the past 12 months |
meth-frequency | Median number of times a user in an age group used meth in the past 12 months |
sedative-use | Percentage of those in an age group who used sedatives in the past 12 months |
sedative-frequency | Median number of times a user in an age group used sedatives in the past 12 months |
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and beaches, contains a number of coastal communities, and supports a local fishing industry, all of which are impacted by coastal change. Knowledge derived from this research program can be used to mitigate hazards and facilitate effective management of this dynamic coastal system. This regional mapping project produced spatial datasets of high-resolution geophysical (bathymetry, backscatter intensity, and seismic reflection) and sedimentary (core and grab-sample) data. The high-resolution geophysical data were collected during numerous surveys within the back-barrier estuarine system, along the barrier island complex, in the nearshore, and along the inner continental shelf. Sediment cores were taken on the mainland and along the barrier islands, and both cores and grab samples were taken on the inner shelf. Data collection was a collaborative effort between the U.S. Geological Survey (USGS) and several other institutions including East Carolina University (ECU), the North Carolina Geological Survey, and the Virginia Institute of Marine Science (VIMS). The high-resolution geophysical data of the inner continental shelf were collected during six separate surveys conducted between 1999 and 2004 (four USGS surveys north of Cape Hatteras: 1999-045-FA, 2001-005-FA, 2002-012-FA, 2002-013-FA, and two USGS surveys south of Cape Hatteras: 2003-003-FA and 2004-003-FA) and cover more than 2600 square kilometers of the inner shelf. Single-beam bathymetry data were collected north of Cape Hatteras in 1999 using a Furuno fathometer. Swath bathymetry data were collected on all other inner shelf surveys using a SEA, Ltd. SwathPLUS 234-kHz bathymetric sonar. Chirp seismic data as well as sidescan-sonar data were collected with a Teledyne Benthos (Datasonics) SIS-1000 north of Cape Hatteras along with boomer seismic reflection data (cruises 1999-045-FA, 2001-005-FA, 2002-012-FA and 2002-013-FA). An Edgetech 512i was used to collect chirp seismic data south of Cape Hatteras (cruises 2003-003-FA and 2004-003-FA) along with a Klein 3000 sidescan-sonar system. Sediment samples were collected with a Van Veen grab sampler during four of the USGS surveys (1999-045-FA, 2001-005-FA, 2002-013-FA, and 2004-003-FA). Additional sediment core data along the inner shelf are provided from previously published studies. A cooperative study, between the North Carolina Geological Survey and the Minerals Management Service (MMS cores), collected vibracores along the inner continental shelf offshore of Nags Head, Kill Devils Hills and Kitty Hawk, North Carolina in 1996. The U.S. Army Corps of Engineers collected vibracores along the inner shelf offshore of Dare County in August 1995 (NDC cores) and July-August 1995 (SNL cores). These cores are curated by the North Carolina Geological Survey and were used as part of the ground validation process in this study. Nearshore geophysical and core data were collected by the Virginia Institute of Marine Science. The nearshore is defined here as the region between the 10-m isobath and the shoreline. High-resolution bathymetry, backscatter intensity, and chirp seismic data were collected between June 2002 and May 2004. Vibracore samples were collected in May and July 2005. Shallow subsurface geophysical data were acquired along the Outer Banks barrier islands using a ground-penetrating radar (GPR) system. Data were collected by East Carolina University from 2002 to 2005. Rotasonic cores (OBX cores) from five drilling operations were collected from 2002 to 2006 by the North Carolina Geological Survey as part of the cooperative study with the USGS. These cores are distributed throughout the Outer Banks as well as the mainland. The USGS collected seismic data for the Quaternary section within the Albemarle-Pamlico estuarine system between 2001 and 2004 during six surveys (2001-013-FA, 2002-015-FA, 2003-005-FA, 2003-042-FA, 2004-005-FA, and 2004-006-FA). These surveys used Geopulse Boomer and Knudsen Engineering Limited (KEL) 320BR Chirp systems, except cruise 2003-042-FA, which used an Edgetech 424 Chirp and a boomer system. The study area includes Albemarle Sound and selected tributary estuaries such as the South, Pungo, Alligator, and Pasquotank Rivers; Pamlico Sound and trunk estuaries including the Neuse and Pamlico Rivers; and back-barrier sounds including Currituck, Croatan, Roanoke, Core, and Bogue.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is The boom and the bubble : the US in the world economy. It features 7 columns including author, publication date, language, and book publisher.
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and beaches, contains a number of coastal communities, and supports a local fishing industry, all of which are impacted by coastal change. Knowledge derived from this research program can be used to mitigate hazards and facilitate effective management of this dynamic coastal system. This regional mapping project produced spatial datasets of high-resolution geophysical (bathymetry, backscatter intensity, and seismic reflection) and sedimentary (core and grab-sample) data. The high-resolution geophysical data were collected during numerous surveys within the back-barrier estuarine system, along the barrier island complex, in the nearshore, and along the inner continental shelf. Sediment cores were taken on the mainland and along the barrier islands, and both cores and grab samples were taken on the inner shelf. Data collection was a collaborative effort between the U.S. Geological Survey (USGS) and several other institutions including East Carolina University (ECU), the North Carolina Geological Survey, and the Virginia Institute of Marine Science (VIMS). The high-resolution geophysical data of the inner continental shelf were collected during six separate surveys conducted between 1999 and 2004 (four USGS surveys north of Cape Hatteras: 1999-045-FA, 2001-005-FA, 2002-012-FA, 2002-013-FA, and two USGS surveys south of Cape Hatteras: 2003-003-FA and 2004-003-FA) and cover more than 2600 square kilometers of the inner shelf. Single-beam bathymetry data were collected north of Cape Hatteras in 1999 using a Furuno fathometer. Swath bathymetry data were collected on all other inner shelf surveys using a SEA, Ltd. SwathPLUS 234-kHz bathymetric sonar. Chirp seismic data as well as sidescan-sonar data were collected with a Teledyne Benthos (Datasonics) SIS-1000 north of Cape Hatteras along with boomer seismic reflection data (cruises 1999-045-FA, 2001-005-FA, 2002-012-FA and 2002-013-FA). An Edgetech 512i was used to collect chirp seismic data south of Cape Hatteras (cruises 2003-003-FA and 2004-003-FA) along with a Klein 3000 sidescan-sonar system. Sediment samples were collected with a Van Veen grab sampler during four of the USGS surveys (1999-045-FA, 2001-005-FA, 2002-013-FA, and 2004-003-FA). Additional sediment core data along the inner shelf are provided from previously published studies. A cooperative study, between the North Carolina Geological Survey and the Minerals Management Service (MMS cores), collected vibracores along the inner continental shelf offshore of Nags Head, Kill Devils Hills and Kitty Hawk, North Carolina in 1996. The U.S. Army Corps of Engineers collected vibracores along the inner shelf offshore of Dare County in August 1995 (NDC cores) and July-August 1995 (SNL cores). These cores are curated by the North Carolina Geological Survey and were used as part of the ground validation process in this study. Nearshore geophysical and core data were collected by the Virginia Institute of Marine Science. The nearshore is defined here as the region between the 10-m isobath and the shoreline. High-resolution bathymetry, backscatter intensity, and chirp seismic data were collected between June 2002 and May 2004. Vibracore samples were collected in May and July 2005. Shallow subsurface geophysical data were acquired along the Outer Banks barrier islands using a ground-penetrating radar (GPR) system. Data were collected by East Carolina University from 2002 to 2005. Rotasonic cores (OBX cores) from five drilling operations were collected from 2002 to 2006 by the North Carolina Geological Survey as part of the cooperative study with the USGS. These cores are distributed throughout the Outer Banks as well as the mainland. The USGS collected seismic data for the Quaternary section within the Albemarle-Pamlico estuarine system between 2001 and 2004 during six surveys (2001-013-FA, 2002-015-FA, 2003-005-FA, 2003-042-FA, 2004-005-FA, and 2004-006-FA). These surveys used Geopulse Boomer and Knudsen Engineering Limited (KEL) 320BR Chirp systems, except cruise 2003-042-FA, which used an Edgetech 424 Chirp and a boomer system. The study area includes Albemarle Sound and selected tributary estuaries such as the South, Pungo, Alligator, and Pasquotank Rivers; Pamlico Sound and trunk estuaries including the Neuse and Pamlico Rivers; and back-barrier sounds including Currituck, Croatan, Roanoke, Core, and Bogue.
In November of 1996 and May of 1997, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the shallow geologic framework of the continental shelf offshore east-central Florida from Cape Canaveral to Sebastian Inlet. This report serves as an archive of unprocessed digital boomer seismic reflection data, navigation files, trackline maps, GIS files, FACS logs, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists SEG Y format (rev. 0) (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic-reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. A large portion of this data resides in a single repository with minimal metadata. As part of the National Geological and Geophysical Data Preservation Program, scientists at the USGS St. Petersburg Coastal and Marine Science Center are converting the analog paper records to digital format using a large-format continuous scanner. This data release serves as an archive of seismic profiles with headers, converted Society of Exploration Geophysicists Y format (SEG-Y) files, navigation data, and geographic information system (GIS) data files for digitized boomer seismic-reflectio ...
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and identifying the transport pathways and sinks of sediment, geoscientists are developing conceptual models of the present-day physical processes shaping the South Carolina coast. The primary objectives of this research effort are: 1) to provide a regional synthesis of the shallow geologic framework underlying the coastal upland, shoreface and inner continental shelf, and define its role in coastal evolution and modern beach behavior; 2) to identify and model the physical processes affecting coastal ocean circulation and sediment transport, and to define their role in shaping the modern shoreline; and 3) to identify sediment sources and transport pathways; leading to construction of a regional sediment budget.
In June of 1996, the U.S. Geological Survey conducted geophysical surveys from Nueces to Copano Bays, Texas. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles and high resolution scanned TIFF images of the original paper printouts are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b0296tx/html/b-02-96-tx.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (NGGDPP) (https://datapreservation.usgs.gov/), and in collaboration with the Bureau of Ocean Energy Management, Marine Minerals Program, scientists at the USGS St. Petersburg Coastal and Marine Science Center converted analog paper records to digital format using a large-format continuous scanner. The scanned image files were subsequently processed to fix distortions and crop out blank spaces prior to exporting as industry standard Society of Exploration Geophysicists date exchange (SEG-Y) formatted files. This data release serves as an archive of HRSP profiles annotated with header information, and converted SEG-Y files. The HRSP data were collected using a Huntec boomer seismic system onboard the Research Vessel (R/V) Erda. The geophysical cruises were completed in two segments within Mississippi Sound. On the first leg, geophysical surveys were conducted in June with the data being acquired from waterbodies surrounding Grand, Cat, and Horn Island (Erda 92-2). During the second leg, geophysical surveys were collected in August off the coast of Mississippi and Alabama and between Horn and Petit Bois Island (92-4). Data collection and processing methods are described in USGS Data Series 1047.
These data represent the first shot point for each line of data acquired with various seismic-reflection systems utilized during U.S. Geological Survey geophysical research cruises.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Boomer nation : the largest and richest generation ever, and how it changed America. It features 7 columns including author, publication date, language, and book publisher.