69 datasets found
  1. d

    Digital Payments and Transactions: Year-, Month- and Bank-wise Number of...

    • dataful.in
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Digital Payments and Transactions: Year-, Month- and Bank-wise Number of Transactions Performed and Failed by Debit Sponsor Banks through NACH [Dataset]. https://dataful.in/datasets/18250
    Explore at:
    xlsx, application/x-parquet, csvAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    All India
    Variables measured
    Volume of Transactions
    Description

    High Frequency Indicator: The dataset contains year-, month- and bank-wise compiled data from the year 2021 to till date on the transactions performed (responses) and failed (returns) by debit sponsor banks through National Automated Clearing House (NACH) system

    Notes:

    1. NACH Credit is an electronic payment service used by an institution for affording credits to a large number of beneficiaries in their bank accounts for the payment of dividend, interest, salary, pension etc. by raising a single debit to the bank account of the user institution
    2. Business Declines (BD) are declined transactions due to a customer entering an invalid pin, incorrect beneficiary account etc. or due to other business reasons such as exceeding per transaction limit, exceeding permitted count of transactions per day, exceeding amount limit for the day etc.
    3. Technical Declines (TD) transactions are those transactions are declined due to any technical reasons such as bank ID is empty or not in correct format or exception code not in Database or not in correct format, etc
  2. Digital banking users in the U.S. 2018-2022, by generation

    • statista.com
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Digital banking users in the U.S. 2018-2022, by generation [Dataset]. https://www.statista.com/statistics/946104/digital-banking-users-by-generation-usa/
    Explore at:
    Dataset updated
    May 31, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2018
    Area covered
    United States
    Description

    This statistic shows the share of population using digital banking in the United States from 2018 to 2022, by generation. In 2018, almost 75 percent of Millennials in the U.S. used digital banking, which is set to rise to 77.6 percent by 2022.

  3. a

    FDIC Insured Banks

    • hifld-geoplatform.hub.arcgis.com
    • sdgs.amerigeoss.org
    • +4more
    Updated Jun 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2018). FDIC Insured Banks [Dataset]. https://hifld-geoplatform.hub.arcgis.com/datasets/geoplatform::fdic-insured-banks/about
    Explore at:
    Dataset updated
    Jun 29, 2018
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    The annual Summary of Deposits (SOD) survey data provides a number of opportunities to better understand the status of our banking system. With the holistic aggregations of the Summary Tables, the geographically sensitive Market Share Reports, and the institution-centric Branch Office Deposits, you will be able to see a clear view of where the deposits are and how they’ve changed over time.The Summary of Deposits (SOD) application will be discontinued by the end of 2024. A new and improved SOD application is being developed and is available for preview now. Explore the latest beta version of the application here.The Deposit Market Share is the percentage of deposits an FDIC-insured institution has within a defined geographic market. This data is based on the annual Summary of Deposits (SOD) survey for FDIC-insured institutions as of June 30.The Deposit Market Share and the Pro Forma (HHI) Reports provide information for all institutions within a specific geographic market for a specific time period. The Market Presence and Growth Rate Reports provide similar information, but from the perspective of one institution. All reports provide data back to 1994 and are available by institution or bank holding company.

  4. Digital Geomorphic-GIS Map of the South Core Banks Area, North Carolina...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the South Core Banks Area, North Carolina (1:24,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, SCBK_geomorphology digital map) adapted from North Carolina Geological Survey unpublished digital data and maps by Coffey and Nickerson (2008) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-south-core-banks-area-north-carolina-1-24000-scale-2008-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    South Core Banks, North Carolina
    Description

    The Digital Geomorphic-GIS Map of the South Core Banks Area, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (scbk_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (scbk_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (scbk_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (scbk_geomorphology_metadata.txt or scbk_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  5. w

    Global Financial Inclusion (Global Findex) Database 2021 - Sri Lanka

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Sri Lanka [Dataset]. https://microdata.worldbank.org/index.php/catalog/4710
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Sri Lanka
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Sri Lanka is 1005.

    Mode of data collection

    Mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  6. Identification for Development (ID4D) Global Dataset

    • datacatalog.worldbank.org
    databank, excel
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    id4d@worldbank.org (2023). Identification for Development (ID4D) Global Dataset [Dataset]. https://datacatalog.worldbank.org/search/dataset/0040787
    Explore at:
    excel, databankAvailable download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Description

    The Identification for Development (ID4D) Global Dataset, compiled by the World Bank Group’s Identification for Development (ID4D) Initiative, presents a collection of indicators that are of relevance for the estimation of adult and child ID coverage and for understanding foundational ID systems' digital capabilities. The indicators have been compiled from multiple sources, including a specialized ID module included in the Global Findex survey and officially recognized international sources such as UNICEF. Although there is no single, globally recognized measure of having a ‘proof of legal identity’ that would cover children and adults at all ages or, of the digital capabilities of foundational ID systems, the combination of these indicators can help better understand where and what gaps in remain in accessing identification and, in turn, in accessing the services and transactions for which an official proof of identity is often required.


    Newly in 2022, adult ID ownership data is primarily based on survey data questions collected in partnership with the Global Findex Survey, while coverage for children is based on birth registration rates compiled by UNICEF. These data series are accessible directly from the World Bank's Databank: https://databank.worldbank.org/source/identification-for-development-(id4d)-data. Prior editions of the data from 2017 and 2018 are available for download here. Updates were released on a yearly basis until 2018; beginning in 2021-2022, the dataset will be released every three years to align with the Findex survey.

  7. g

    Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina...

    • gimi9.com
    • catalog.data.gov
    Updated Mar 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina (1:10,000 scale 2012 imagery) (NPS, GRD, GRI, CALO, SHKB geomorphology digital map) adapted from a East Carolina University unpublished report and GIS data by Riggs, Ames and Mallinson (2015) [Dataset]. https://www.gimi9.com/dataset/data-gov_digital-geomorphic-gis-map-of-the-shackleford-banks-north-carolina-1-10000-scale-2012-imag/
    Explore at:
    Dataset updated
    Mar 27, 2020
    Area covered
    Shackleford Banks, North Carolina
    Description

    The Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina (1:10,000 scale 2012 imagery) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (shkb_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (shkb_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (shkb_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shkb_geomorphology_metadata.txt or shkb_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. w

    Global Financial Inclusion (Global Findex) Database 2021 - Uganda

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Uganda [Dataset]. https://microdata.worldbank.org/index.php/catalog/4720
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Uganda
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Three districts in the North region were excluded for security reasons – Kotido, Moroto Nakapiripirit. The excluded areas represent 2% or less of the population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Uganda is 1000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  9. Company Financial Data | Banking & Capital Markets Professionals in the...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Company Financial Data | Banking & Capital Markets Professionals in the Middle East | Verified Global Profiles from 700M+ Dataset [Dataset]. https://datarade.ai/data-products/company-financial-data-banking-capital-markets-profession-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Georgia, Kyrgyzstan, Mongolia, Jordan, Uzbekistan, Bahrain, Korea (Republic of), Maldives, Brunei Darussalam, State of
    Description

    Success.ai’s Company Financial Data for Banking & Capital Markets Professionals in the Middle East offers a reliable and comprehensive dataset designed to connect businesses with key stakeholders in the financial sector. Covering banking executives, capital markets professionals, and financial advisors, this dataset provides verified contact details, decision-maker profiles, and firmographic insights tailored for the Middle Eastern market.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach and strategic initiatives are powered by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution empowers your organization to build meaningful connections in the region’s thriving financial industry.

    Why Choose Success.ai’s Company Financial Data?

    1. Verified Contact Data for Financial Professionals

      • Access verified email addresses, direct phone numbers, and LinkedIn profiles of banking executives, capital markets advisors, and financial consultants.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and minimizing data inefficiencies.
    2. Targeted Insights for the Middle East Financial Sector

      • Includes profiles from major Middle Eastern financial hubs such as Dubai, Riyadh, Abu Dhabi, and Doha, covering diverse institutions like banks, investment firms, and regulatory bodies.
      • Gain insights into region-specific financial trends, regulatory frameworks, and market opportunities.
    3. Continuously Updated Datasets

      • Real-time updates reflect changes in leadership, market activities, and organizational structures.
      • Stay ahead of emerging opportunities and align your strategies with evolving market dynamics.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other global privacy regulations, ensuring responsible data usage and compliance with legal standards.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with decision-makers and professionals in banking, investment management, and capital markets across the Middle East.
    • 30M Company Profiles: Access detailed firmographic data, including organization sizes, revenue ranges, and geographic footprints.
    • Leadership Contact Information: Connect directly with CEOs, CFOs, risk managers, and regulatory professionals driving financial strategies.
    • Decision-Maker Insights: Understand key decision-makers’ roles and responsibilities to tailor your outreach effectively.

    Key Features of the Dataset:

    1. Decision-Maker Profiles in Banking & Capital Markets

      • Identify and connect with executives, portfolio managers, and analysts shaping investment strategies and financial operations.
      • Target professionals responsible for compliance, risk management, and operational efficiency.
    2. Advanced Filters for Precision Targeting

      • Filter institutions by segment (retail banking, investment banking, private equity), geographic location, revenue size, or workforce composition.
      • Tailor campaigns to align with specific financial needs, such as digital transformation, customer retention, or risk mitigation.
    3. Firmographic and Leadership Insights

      • Access detailed firmographic data, including company hierarchies, financial health indicators, and service specializations.
      • Gain a deeper understanding of organizational structures and market positioning.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Offer financial technology solutions, consulting services, or compliance tools to banking institutions and investment firms.
      • Build relationships with decision-makers responsible for vendor selection and financial strategy implementation.
    2. Market Research and Competitive Analysis

      • Analyze trends in Middle Eastern banking and capital markets to guide product development and market entry strategies.
      • Benchmark against competitors to identify market gaps, emerging niches, and growth opportunities.
    3. Partnership Development and Vendor Evaluation

      • Connect with financial institutions seeking strategic partnerships or evaluating service providers for operational improvements.
      • Foster alliances that drive mutual growth and innovation.
    4. Recruitment and Talent Solutions

      • Engage HR professionals and hiring managers seeking top talent in finance, compliance, or risk management.
      • Provide staffing solutions, training programs, or workforce optimization tools tailored to the financial sector.

    Why Choose Success.ai?

    1. Best Price Guarantee
      • Access premium-quality financial data at competitive prices, ensuring strong ROI for your outreach, marketing, and partners...
  10. Penetration rate of online banking in India 2014-2029

    • statista.com
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Penetration rate of online banking in India 2014-2029 [Dataset]. https://www.statista.com/topics/5362/banking-industry-in-india/
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    India
    Description

    The online banking penetration rate in India was forecast to continuously increase between 2024 and 2029 by in total 19.3 percentage points. After the fifteenth consecutive increasing year, the online banking penetration is estimated to reach 64.34 percent and therefore a new peak in 2029. Notably, the online banking penetration rate of was continuously increasing over the past years.Shown is the estimated percentage of the total population in a given region or country, which makes use of online banking.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the online banking penetration rate in countries like Pakistan and Bangladesh.

  11. P

    Selection of indicators from World Bank Digital Adoption Index (WB DAI) for...

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2023). Selection of indicators from World Bank Digital Adoption Index (WB DAI) for Pacific Island Countries and Territories [Dataset]. https://pacificdata.org/data/dataset/selection-of-indicators-from-world-bank-digital-adoption-index-wb-dai-for-pacific-island-df-wbdai
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2014 - Dec 31, 2016
    Description

    This selection includes data related to SPC member countries and territories for some of the indicators available in the original database published by the World Bank.

    Find more Pacific data on PDH.stat.

  12. w

    Global Financial Inclusion (Global Findex) Database 2021 - Mali

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Mali [Dataset]. https://microdata.worldbank.org/index.php/catalog/4675
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Mali
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    The regions of Gao, Kidal, Mopti, and Tombouctou were excluded for security reasons. Quartiers and villages with less than 50 inhabitants were also excluded from the sample. The excluded areas represent 23 percent of the total population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Mali is 1000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  13. d

    Digital Payments and Transactions: Year-, Month- and Bank-wise Number of...

    • dataful.in
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Digital Payments and Transactions: Year-, Month- and Bank-wise Number of Transactions Performed and Failed by Credit Sponsor Banks through APB System [Dataset]. https://dataful.in/datasets/18248
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    All India
    Variables measured
    Volume of Transactions
    Description

    High Frequency Indicator: The dataset contains year-, month- and bank-wise compiled data from the year 2021 to till date on the number of transactions performed (responses) and failed (returns) by credit sponsor banks through Aadhaar Payment Bridge (APB) system

    Notes:

    1. Business Declines (BD) are declined transactions due to a customer entering an invalid pin, incorrect beneficiary account etc. or due to other business reasons such as exceeding per transaction limit, exceeding permitted count of transactions per day, exceeding amount limit for the day etc.
    2. Technical Declines (TD) transactions are those transactions are declined due to any technical reasons such as bank ID is empty or not in correct format or exception code not in Database or not in correct format, etc
  14. w

    Global Financial Inclusion (Global Findex) Database 2021 - Afghanistan,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2023). Global Financial Inclusion (Global Findex) Database 2021 - Afghanistan, Albania, Algeria...and 136 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/4607
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021 - 2023
    Area covered
    Algeria
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world’s most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of almost 145,000 people in 139 economies, representing 97 percent of the world’s population. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19–related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Additionally, phone surveys were not a viable option in 16 economies in 2021, which were then surveyed in 2022.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender..

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  15. US Retail Banking Market Analysis - Size and Forecast 2025-2029

    • technavio.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Retail Banking Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-retail-banking-market-industry-analysis
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Retail Banking Market Size 2025-2029

    The US retail banking market size is forecast to increase by USD 92.1 billion, at a CAGR of 4.2% between 2024 and 2029.

    Retail banking is undergoing significant transformation, driven by the ongoing digitalization of financial services. This trend is reflected In the increasing adoption of cloud-based retail banking solutions, which offer greater flexibility, scalability, and cost savings. However, this shift towards digital banking also presents new challenges, particularly In the area of cybersecurity. As more financial transactions move online, the risk of cyberattacks and data breaches increases. Retail banks must invest in strong cybersecurity measures to protect their customers' sensitive information and maintain trust in their brands. Another key trend is the growing use of artificial intelligence and machine learning in retail banking, which is enabling personalized customer experiences and more efficient operations. Despite these opportunities, retail banks face stiff competition from fintechs and other disruptors, requiring them to continually innovate and adapt to remain competitive.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    The market is experiencing significant shifts driven by evolving consumer behaviors and emerging technologies. Domestic consumption continues to fuel demand for credit cards and loans, with credit card balances reaching an all-time high. Disposable income, however, remains a concern for some, leading to an increase in bankruptcy filings. Digital transformation is at the forefront of the industry, with tech-savvy competitors, including digital-first banks and fintechs, challenging traditional institutions. Customer expectations are higher than ever, leading to a focus on pre-approvals, funding, and a wider credit spectrum for loans. Strategic partnerships and investment in core products like cash management and digital banking are essential for staying competitive. The consumer lending niche, in particular, is seeing rapid innovation, with online banks and digital banking solutions offering convenience and ease of use.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Private sector banks
      Public sector banks
      Foreign banks
      Community development banks
      Non-banking financial companies
    
    
    Service
    
      Saving and checking account
      Personal loan
      Mortgages
      Debit and credit cards
      Others
    
    
    Channel
    
      Direct sales
      Distributor
    
    
    Geography
    
      US
    

    By Type Insights

    The private sector banks segment is estimated to witness significant growth during the forecast period.
    

    The market's private sector segment has experienced growth due to various factors, including regulatory changes and technological advancements. Regulatory reforms have created a more favourable environment for new entrants, leading to an increase In the number of private banks. Open banking and fraud exposure have influenced business models, necessitating digital transformation. Consumer preferences, particularly among millennials and Gen Z, prioritize convenience and privacy. These factors have driven the growth of private banks, making them an essential component of the US retail banking landscape.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our US Retail Banking Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in the adoption of the US Retail Banking Market?

    Ongoing digital transformation in retail banking is the key driver of the market.

    Retail banking is undergoing a digital transformation, with an increasing focus on providing convenient and accessible online and mobile banking experiences for consumers. This shift is driven by the growing importance of digital channels in domestic consumption and the rising use of credit cards and loans. Banks are investing heavily in digital technologies to meet changing customer expectations and compete with tech-savvy fintechs and digital-first banks. According to a consumer survey, millennials and Gen Z generations prefer digital banking solutions that offer real-time transaction tracking, personalized services, and secure payments. BNP Paribas, for instance, has invested around USD 2 billion in information and communication technology (ICT) in 2023 to streamline banking operations using AI, the cloud, and other digital technologies.
    Digital banking also pre
    
  16. w

    Global Financial Inclusion (Global Findex) Database 2021 - Brazil

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Brazil [Dataset]. https://microdata.worldbank.org/index.php/catalog/4620
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Brazil
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Brazil is 1002.

    Mode of data collection

    Landline and mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  17. SNL Global Banking Dataset | S&P Global Marketplace

    • marketplace.spglobal.com
    Updated Aug 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S&P Global (2021). SNL Global Banking Dataset | S&P Global Marketplace [Dataset]. https://www.marketplace.spglobal.com/en/datasets/snl-global-banking-(227)
    Explore at:
    Dataset updated
    Aug 7, 2021
    Dataset authored and provided by
    S&P Globalhttp://www.spglobal.com/
    Description

    The SNL Global Banking data delivers harmonized line items and key ratios for banks across the globe.

  18. d

    Digital Payments and Transactions: Year-, Month- and Bank-wise Volume of...

    • dataful.in
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital Payments and Transactions: Year-, Month- and Bank-wise Volume of NETC FASTag Transactions [Dataset]. https://dataful.in/datasets/18246
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    All India
    Variables measured
    Volume of Fastag Transactions, Percentage of Approved and Declined Transactions
    Description

    High Frequency Indicator: The dataset contains year-, month- and bank-wise compiled data from the year 2021 to till date on the volume of NETC FASTag transactions performed by Issuer and Acquirer banks, along with percentage of transaction which are Approved, Deemed Approved, Business Declined and Technically Declined.

    Notes:

    1. Issuer Banks are banks which issue ETC tag to the vehicle owner and Acquiring Banks are Banks which acquires the Toll Plaza to facilitate the acceptance of ETC transaction for the payment through ETC Payment System. For the purpose of issuing as well as acquiring, the banks must be members of NPCI.
    2. Business Declines (BD) are declined transactions due to a customer entering an invalid pin, incorrect beneficiary account etc. or due to other business reasons such as exceeding per transaction limit, exceeding permitted count of transactions per day, exceeding amount limit for the day etc.
    3. Technical Declines (TD) transactions are those transactions are declined due to any technical reasons such as bank ID is empty or not in correct format or exception code not in Database or not in correct format, etc
  19. Penetration rate of online banking in Singapore 2014-2029

    • statista.com
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Penetration rate of online banking in Singapore 2014-2029 [Dataset]. https://www.statista.com/forecasts/1150317/online-banking-penetration-forecast-in-singapore
    Explore at:
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Singapore
    Description

    The online banking penetration rate in Singapore was forecast to increase between 2024 and 2029 by in total 6.3 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The online banking penetration is estimated to amount to 87.02 percent in 2029. Notably, the online banking penetration rate of was continuously increasing over the past years.Shown is the estimated percentage of the total population in a given region or country, which makes use of online banking.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the online banking penetration rate in countries like Philippines and Thailand.

  20. f

    Central Bank of Brazil data of foreign capital transfers, 2000-2011

    • su.figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alice Dauriach; Emma Sundström; Beatrice Crona; Victor Galaz (2023). Central Bank of Brazil data of foreign capital transfers, 2000-2011 [Dataset]. http://doi.org/10.17045/sthlmuni.5857716.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Stockholm University
    Authors
    Alice Dauriach; Emma Sundström; Beatrice Crona; Victor Galaz
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    This data set is a subset of the "Records of foreign capital" (Registros de capitais estrangeiros", RCE) published by the Central Bank of Brazil (CBB) on their website.The data set consists of three data files and three corresponding metadata files. All files are in openly accessible .csv or .txt formats. See detailed outline below for data contained in each. Data files contain transaction-specific data such as unique identifier, currency, cancelled status and amount. Metadata files outline variables in the corresponding data file.RCE_Unclean_full_dataset.csv - all transactions published to the Central Bank website from the four main categories outlined belowMetadata_Unclean_full_dataset.csvRCE_Unclean_cancelled_dataset.csv - data extracted from the RCE_Unclean_full_dataset.csv where transactions were registered then cancelledMetadata_Unclean_cancelled_dataset.csvRCE_Clean_selection_dataset.csv - transaction data extracted from RCE_Unclean_full_dataset.csv and RCE_Unclean_cancelled_dataset.csv for the nine companies and criteria identified belowMetadata_Clean_selection_dataset.csvThe data include the period between October 2000 and July 2011. This is the only time span for the data provided by the Central Bank of Brazil at this stage. The records were published monthly by the Central Bank of Brazil as required by Art. 66 in Decree nº 55.762 of 17 February 1965, modified by Decree nº 4.842 of 17 September 2003. The records were published on the bank’s website starting October 2000, as per communique nº 011489 of 7 October 2003. This remained the case until August 2011, after which the amount of each transaction was no longer disclosed (and publication of these stopped altogether after October 2011). The disclosure of the records was suspended in order to review their legal and technical aspects, and ensure their suitability to the requirements of the rules governing the confidentiality of the information (Law nº 12.527 of 18 November 2011 and Decree nº 7724 of May 2012) (pers. comm. Central Bank of Brazil, 2016. Name of contact available upon request to Authors).The records track transfers of foreign capital made from abroad to companies domiciled in Brazil, with information on the foreign company (name and country) transferring the money, and on the company receiving the capital (name and federative unit). For the purpose of this study, we consider the four categories of foreign capital transactions which are published with their amount and currency in the Central Bank’s data, and which are all part of the “Register of financial transactions” (abbreviated RDE-ROF): loans, leasing, financed import and cash in advance (see below for a detailed description). Additional categories exist, such as foreign direct investment (RDE-IED) and External Investment in Portfolio (RDE-Portfólio), for which no amount is published and which are therefore not included.We used the data posted online as PDFs on the bank’s website, and created a script to extract the data automatically from these four categories into the RCE_Unclean_full_dataset.csv file. This data set has not been double-checked manually and may contain errors. We used a similar script to extract rows from the "cancelled transactions" sections of the PDFs into the RCE_Unclean_cancelled_dataset.csv file. This is useful to identify transactions that have been registered to the Central Bank but later cancelled. This data set has not been double-checked manually and may contain errors.From these raw data sets, we conducted the following selections and calculations in order to create the RCE_Clean_selection_dataset.csv file. This data set has been double-checked manually to secure that no errors have been made in the extraction process.We selected all transactions whose recipient company name corresponds to one of these nine companies, or to one of their known subsidiaries in Brazil, according to the list of subsidiaries recorded in the Orbis database, maintained by Bureau Van Dijk. Transactions are included if the recipient company name matches one of the following:- the current or former name of one of the nine companies in our sample (former names are identified using Orbis, Bloomberg’s company profiles or the company website);- the name of a known subsidiary of one of the nine companies, if and only if we find evidence (in Orbis, Bloomberg’s company profiles or on the company website) that this subsidiary was owned at some point during the period 2000-2011, and that it operated in a sector related to the soy or beef industry (including fertilizers and trading activities).For each transaction, we extracted the name of the company sending capital and when possible, attributed the transaction to the known ultimate owner.The name of the countries of origin sometimes comes with typos or different denominations: we harmonized them.A manual check of all the selected data unveiled that a few transactions (n=14), appear twice in the database while bearing the same unique identification number. According to the Central Bank of Brazil (pers. comm., November 2016), this is due to errors in their routine of data extraction. We therefore deleted duplicates in our database, keeping only the latest occurrence of each unique transaction. Six (6) transactions recorded with an amount of zero were also deleted. Two (2) transactions registered in August 2003 with incoherent currencies (Deutsche Mark and Dutch guilder, which were demonetised in early 2002) were also deleted.To secure that the import of data from PDF to the database did not contain any systematic errors, for instance due to mistakes in coding, data were checked in two ways. First, because the script identifies the end of the row in the PDF using the amount of the transaction, which can sometimes fail if the amount is not entered correctly, we went through the extracted raw data (2798 rows) and cleaned all rows whose end had not been correctly identified by the script. Next, we manually double-checked the 486 largest transactions representing 90% of the total amount of capital inflows, as well as 140 randomly selected additional rows representing 5% of the total rows, compared the extracted data to the original PDFs, and found no mistakes.Transfers recorded in the database have been made in different currencies, including US dollars, Euros, Japanese Yens, Brazilian Reais, and more. The conversion to US dollars of all amounts denominated in other currencies was done using the average monthly exchange rate as published by the International Monetary Fund (International Financial Statistics: Exchange rates, national currency per US dollar, period average). Due to the limited time period, we have not corrected for inflation but aggregated nominal amounts in USD over the period 2000-2011.The categories loans, cash in advance (anticipated payment for exports), financed import, and leasing/rental, are those used by the Central Bank of Brazil in their published data. They are denominated respectively: “Loans” (“emprestimos” in original source) - : includes all loans, either contracted directly with creditors or indirectly through the issuance of securities, brokered by foreign agents. “Anticipated payment for exports” (“pagamento/renovacao pagamento antecipado de exportacao” in original source): defined as a type of loan (used in trade finance)“Financed import” (“importacao financiada” in original source): comprises all import financing transactions either direct (contracted by the importer with a foreign bank or with a foreign supplier), or indirect (contracted by Brazilian banks with foreign banks on behalf of Brazilian importers). They must be declared to the Central Bank if their term of payment is superior to 360 days.“Leasing/rental” (“arrendamento mercantil, leasing e aluguel” in original source) : concerns all types of external leasing operations consented by a Brazilian entity to a foreign one. They must be declared if the term of payment is superior to 360 days.More information about the different categories can be found through the Central Bank online.(Research Data Support provided by Springer Nature)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataful (Factly) (2025). Digital Payments and Transactions: Year-, Month- and Bank-wise Number of Transactions Performed and Failed by Debit Sponsor Banks through NACH [Dataset]. https://dataful.in/datasets/18250

Digital Payments and Transactions: Year-, Month- and Bank-wise Number of Transactions Performed and Failed by Debit Sponsor Banks through NACH

Explore at:
xlsx, application/x-parquet, csvAvailable download formats
Dataset updated
Mar 24, 2025
Dataset authored and provided by
Dataful (Factly)
License

https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

Area covered
All India
Variables measured
Volume of Transactions
Description

High Frequency Indicator: The dataset contains year-, month- and bank-wise compiled data from the year 2021 to till date on the transactions performed (responses) and failed (returns) by debit sponsor banks through National Automated Clearing House (NACH) system

Notes:

  1. NACH Credit is an electronic payment service used by an institution for affording credits to a large number of beneficiaries in their bank accounts for the payment of dividend, interest, salary, pension etc. by raising a single debit to the bank account of the user institution
  2. Business Declines (BD) are declined transactions due to a customer entering an invalid pin, incorrect beneficiary account etc. or due to other business reasons such as exceeding per transaction limit, exceeding permitted count of transactions per day, exceeding amount limit for the day etc.
  3. Technical Declines (TD) transactions are those transactions are declined due to any technical reasons such as bank ID is empty or not in correct format or exception code not in Database or not in correct format, etc
Search
Clear search
Close search
Google apps
Main menu