100+ datasets found
  1. Total population worldwide 1950-2100

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  3. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. Identification for Development (ID4D) Global Dataset

    • datacatalog.worldbank.org
    databank, excel
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    id4d@worldbank.org (2023). Identification for Development (ID4D) Global Dataset [Dataset]. https://datacatalog.worldbank.org/search/dataset/0040787
    Explore at:
    excel, databankAvailable download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Description

    The Identification for Development (ID4D) Global Dataset, compiled by the World Bank Group’s Identification for Development (ID4D) Initiative, presents a collection of indicators that are of relevance for the estimation of adult and child ID coverage and for understanding foundational ID systems' digital capabilities. The indicators have been compiled from multiple sources, including a specialized ID module included in the Global Findex survey and officially recognized international sources such as UNICEF. Although there is no single, globally recognized measure of having a ‘proof of legal identity’ that would cover children and adults at all ages or, of the digital capabilities of foundational ID systems, the combination of these indicators can help better understand where and what gaps in remain in accessing identification and, in turn, in accessing the services and transactions for which an official proof of identity is often required.


    Newly in 2022, adult ID ownership data is primarily based on survey data questions collected in partnership with the Global Findex Survey, while coverage for children is based on birth registration rates compiled by UNICEF. These data series are accessible directly from the World Bank's Databank: https://databank.worldbank.org/source/identification-for-development-(id4d)-data. Prior editions of the data from 2017 and 2018 are available for download here. Updates were released on a yearly basis until 2018; beginning in 2021-2022, the dataset will be released every three years to align with the Findex survey.

  5. Romania - Climate Change

    • data.humdata.org
    • data.amerigeoss.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Romania - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-romania
    Explore at:
    csv(107232), csv(4729)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Romania
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  6. Argentina - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Argentina - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-argentina
    Explore at:
    csv(114151), csv(4880)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Argentina
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  7. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/berkeleyearth/climate-change-earth-suRFace-temperature-data/kernels
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  8. Cameroon - Climate Change

    • data.humdata.org
    csv
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Cameroon - Climate Change [Dataset]. https://data.humdata.org/dataset/a05175d1-0df7-41df-af4a-13cb9b5f2a22?force_layout=desktop
    Explore at:
    csv(4422), csv(111975)Available download formats
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cameroon
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  9. h

    GWFSS-competition

    • huggingface.co
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    XIANG (2025). GWFSS-competition [Dataset]. https://huggingface.co/datasets/XIANG-Shuai/GWFSS-competition
    Explore at:
    Dataset updated
    Mar 13, 2025
    Authors
    XIANG
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    Competition Page If you want any update on the Global Wheat Dataset Community, go on https://www.global-wheat.com/ Wheat is a cornerstone of global food security, serving as a dietary staple for billions of people worldwide. Detailed analysis of wheat plants can help scientists and farmers cultivate healthier, more resilient, and more productive crops. The Global Wheat Full Semantic Segmentation (GWFSS) task aims to perform pixel-level segmentation of plant components… See the full description on the dataset page: https://huggingface.co/datasets/XIANG-Shuai/GWFSS-competition.

  10. Africa Crop Cassava - Harvested Area

    • ecowas.africageoportal.com
    • africageoportal.com
    • +1more
    Updated Nov 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Africa Crop Cassava - Harvested Area [Dataset]. https://ecowas.africageoportal.com/datasets/1f7863773c2649e5bb290b406c4d36f2
    Explore at:
    Dataset updated
    Nov 18, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Cassava (Manihot esculenta) also known as manioc in South America, is grown world-wide in tropical and sub-tropical regions providing an important staple for the diet of over half a billion people. It is drought tolerant and grows well in marginal soils. More than half of the world's cassava production is from Africa and Nigeria is the world's largest producer. In Ghana, cassava accounts for roughly 30% of the calories eaten. The root of the cassava plant must be prepared to remove harmful compounds prior to eating. Dataset SummaryThis layer provides access to a 5 arc-minute (approximately 10 km at the equator) cell-sized raster of the 1999-2001 annual average area of cassava harvested in Africa. The data are in units of hectares/grid cell.The SPAM 2000 v3.0.6 data used to create this layer were produced by the International Food Policy Research Institute in 2012. This dataset was created by spatially disaggregating national and sub-national harvest data using the Spatial Production Allocation Model. Link to source metadataFor more information about this dataset and the importance of casava as a staple food see the Harvest Choice webpage.For data on other agricultural species in Africa see these layers:Groundnut (Peanut)Maize (Corn)MilletPotatoRiceSorghumSweet Potato and YamWheatData for important agricultural crops in South America are available here.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixels which allows access to the full dataset.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  11. A

    ‘WHO national life expectancy ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘WHO national life expectancy ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-who-national-life-expectancy-c4c7/d31e495e/?iid=008-857&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘WHO national life expectancy ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mmattson/who-national-life-expectancy on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    I am developing my data science skills in areas outside of my previous work. An interesting problem for me was to identify which factors influence life expectancy on a national level. There is an existing Kaggle data set that explored this, but that information was corrupted. Part of the problem solving process is to step back periodically and ask "does this make sense?" Without reasonable data, it is harder to notice mistakes in my analysis code (as opposed to unusual behavior due to the data itself). I wanted to make a similar data set, but with reliable information.

    This is my first time exploring life expectancy, so I had to guess which features might be of interest when making the data set. Some were included for comparison with the other Kaggle data set. A number of potentially interesting features (like air pollution) were left off due to limited year or country coverage. Since the data was collected from more than one server, some features are present more than once, to explore the differences.

    Content

    A goal of the World Health Organization (WHO) is to ensure that a billion more people are protected from health emergencies, and provided better health and well-being. They provide public data collected from many sources to identify and monitor factors that are important to reach this goal. This set was primarily made using GHO (Global Health Observatory) and UNESCO (United Nations Educational Scientific and Culture Organization) information. The set covers the years 2000-2016 for 183 countries, in a single CSV file. Missing data is left in place, for the user to decide how to deal with it.

    Three notebooks are provided for my cursory analysis, a comparison with the other Kaggle set, and a template for creating this data set.

    Inspiration

    There is a lot to explore, if the user is interested. The GHO server alone has over 2000 "indicators". - How are the GHO and UNESCO life expectancies calculated, and what is causing the difference? That could also be asked for Gross National Income (GNI) and mortality features. - How does the life expectancy after age 60 compare to the life expectancy at birth? Is the relationship with the features in this data set different for those two targets? - What other indicators on the servers might be interesting to use? Some of the GHO indicators are different studies with different coverage. Can they be combined to make a more useful and robust data feature? - Unraveling the correlations between the features would take significant work.

    --- Original source retains full ownership of the source dataset ---

  12. Number of internet users worldwide 2014-2029

    • statista.com
    • flwrdeptvarieties.store
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  13. d

    Data from: Decadal Variations in NDVI and Food Production in India

    • catalog.data.gov
    • data.nasa.gov
    • +3more
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2023). Decadal Variations in NDVI and Food Production in India [Dataset]. https://catalog.data.gov/dataset/decadal-variations-in-ndvi-and-food-production-in-india
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Dashlink
    Area covered
    India
    Description

    In this study we use long-term satellite, climate, and crop observations to document the spatial distribution of the recent stagnation in food grain production affecting the water-limited tropics (WLT), a region where 1.5 billion people live and depend on local agriculture that is constrained by chronic water shortages. Overall, our analysis shows that the recent stagnation in food production is corroborated by satellite data. The growth rate in annually integrated vegetation greenness, a measure of crop growth, has declined significantly (p < 0.10) in 23% of the WLT cropland area during the last decade, while statistically significant increases in the growth rates account for less than 2%. In most countries, the decade-long declines appear to be primarily due to unsustainable crop management practices rather than climate alone. One quarter of the statistically significant declines are observed in India, which with the world’s largest population of food-insecure people and largest WLT croplands, is a leading example of the observed declines. Here we show geographically matching patterns of enhanced crop production and irrigation expansion with groundwater that have leveled off in the past decade. We estimate that, in the absence of irrigation, the enhancement in dry-season food grain production in India, during 1982–2002, would have required an increase in annual rainfall of at least 30% over almost half of the cropland area. This suggests that the past expansion of use of irrigation has not been sustainable. We expect that improved surface and groundwater management practices will be required to reverse the recent food grain production declines. MDPI and ACS Style Milesi, C.; Samanta, A.; Hashimoto, H.; Kumar, K.K.; Ganguly, S.; Thenkabail, P.S.; Srivastava, A.N.; Nemani, R.R.; Myneni, R.B. Decadal Variations in NDVI and Food Production in India. Remote Sens. 2010, 2, 758-776. AMA Style Milesi C., Samanta A., Hashimoto H., Kumar K.K., Ganguly S., Thenkabail P.S., Srivastava A.N., Nemani R.R., Myneni R.B. Decadal Variations in NDVI and Food Production in India. Remote Sensing. 2010; 2(3):758-776. Chicago/Turabian Style Milesi, Cristina; Samanta, Arindam; Hashimoto, Hirofumi; Kumar, K. Krishna; Ganguly, Sangram; Thenkabail, Prasad S.; Srivastava, Ashok N.; Nemani, Ramakrishna R.; Myneni, Ranga B. 2010. "Decadal Variations in NDVI and Food Production in India." Remote Sens. 2, no. 3: 758-776.

  14. Saudi Arabia - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Saudi Arabia - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-saudi-arabia
    Explore at:
    csv(5884), csv(103845)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Saudi Arabia
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  15. Greece - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Greece - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-greece
    Explore at:
    csv(109800), csv(4807)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Greece
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  16. Cote d'Ivoire - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Cote d'Ivoire - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-cote-d-ivoire
    Explore at:
    csv(116252), csv(4617)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Côte d'Ivoire
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  17. Mexico - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mexico - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-mexico
    Explore at:
    csv(113272), csv(4725)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  18. Thailand - Climate Change

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Thailand - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-thailand
    Explore at:
    csv(102456), csv(4963)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Thailand
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

  19. Spotify Million Playlist: Recsys Challenge 2018 Dataset

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AIcrowd; AIcrowd (2022). Spotify Million Playlist: Recsys Challenge 2018 Dataset [Dataset]. http://doi.org/10.5281/zenodo.6425593
    Explore at:
    Dataset updated
    Apr 9, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    AIcrowd; AIcrowd
    Description

    Spotify Million Playlist Dataset Challenge

    Summary

    The Spotify Million Playlist Dataset Challenge consists of a dataset and evaluation to enable research in music recommendations. It is a continuation of the RecSys Challenge 2018, which ran from January to July 2018. The dataset contains 1,000,000 playlists, including playlist titles and track titles, created by users on the Spotify platform between January 2010 and October 2017. The evaluation task is automatic playlist continuation: given a seed playlist title and/or initial set of tracks in a playlist, to predict the subsequent tracks in that playlist. This is an open-ended challenge intended to encourage research in music recommendations, and no prizes will be awarded (other than bragging rights).

    Background

    Playlists like Today’s Top Hits and RapCaviar have millions of loyal followers, while Discover Weekly and Daily Mix are just a couple of our personalized playlists made especially to match your unique musical tastes.

    Our users love playlists too. In fact, the Digital Music Alliance, in their 2018 Annual Music Report, state that 54% of consumers say that playlists are replacing albums in their listening habits.

    But our users don’t love just listening to playlists, they also love creating them. To date, over 4 billion playlists have been created and shared by Spotify users. People create playlists for all sorts of reasons: some playlists group together music categorically (e.g., by genre, artist, year, or city), by mood, theme, or occasion (e.g., romantic, sad, holiday), or for a particular purpose (e.g., focus, workout). Some playlists are even made to land a dream job, or to send a message to someone special.

    The other thing we love here at Spotify is playlist research. By learning from the playlists that people create, we can learn all sorts of things about the deep relationship between people and music. Why do certain songs go together? What is the difference between “Beach Vibes” and “Forest Vibes”? And what words do people use to describe which playlists?

    By learning more about nature of playlists, we may also be able to suggest other tracks that a listener would enjoy in the context of a given playlist. This can make playlist creation easier, and ultimately help people find more of the music they love.

    Dataset

    To enable this type of research at scale, in 2018 we sponsored the RecSys Challenge 2018, which introduced the Million Playlist Dataset (MPD) to the research community. Sampled from the over 4 billion public playlists on Spotify, this dataset of 1 million playlists consist of over 2 million unique tracks by nearly 300,000 artists, and represents the largest public dataset of music playlists in the world. The dataset includes public playlists created by US Spotify users between January 2010 and November 2017. The challenge ran from January to July 2018, and received 1,467 submissions from 410 teams. A summary of the challenge and the top scoring submissions was published in the ACM Transactions on Intelligent Systems and Technology.

    In September 2020, we re-released the dataset as an open-ended challenge on AIcrowd.com. The dataset can now be downloaded by registered participants from the Resources page.

    Each playlist in the MPD contains a playlist title, the track list (including track IDs and metadata), and other metadata fields (last edit time, number of playlist edits, and more). All data is anonymized to protect user privacy. Playlists are sampled with some randomization, are manually filtered for playlist quality and to remove offensive content, and have some dithering and fictitious tracks added to them. As such, the dataset is not representative of the true distribution of playlists on the Spotify platform, and must not be interpreted as such in any research or analysis performed on the dataset.

    Dataset Contains

    1000 examples of each scenario:

    Title only (no tracks) Title and first track Title and first 5 tracks First 5 tracks only Title and first 10 tracks First 10 tracks only Title and first 25 tracks Title and 25 random tracks Title and first 100 tracks Title and 100 random tracks

    Download Link

    Full Details: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
    Download Link: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge/dataset_files

  20. Nigeria - Climate Change

    • data.humdata.org
    • data.amerigeoss.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Nigeria - Climate Change [Dataset]. https://data.humdata.org/dataset/world-bank-climate-change-indicators-for-nigeria
    Explore at:
    csv(104632), csv(4405)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nigeria
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
Organization logo

Total population worldwide 1950-2100

Explore at:
22 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu