Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Facebook
TwitterSadly, the trend of fatal police shootings in the United States seems to only be increasing, with a total 1,173 civilians having been shot, 248 of whom were Black, as of December 2024. In 2023, there were 1,164 fatal police shootings. Additionally, the rate of fatal police shootings among Black Americans was much higher than that for any other ethnicity, standing at 6.1 fatal shootings per million of the population per year between 2015 and 2024. Police brutality in the U.S. In recent years, particularly since the fatal shooting of Michael Brown in Ferguson, Missouri in 2014, police brutality has become a hot button issue in the United States. The number of homicides committed by police in the United States is often compared to those in countries such as England, where the number is significantly lower. Black Lives Matter The Black Lives Matter Movement, formed in 2013, has been a vocal part of the movement against police brutality in the U.S. by organizing “die-ins”, marches, and demonstrations in response to the killings of black men and women by police. While Black Lives Matter has become a controversial movement within the U.S., it has brought more attention to the number and frequency of police shootings of civilians.
Facebook
Twitter"The U.S. has now passed the grim milestone of 150,000 coronavirus deaths with Califoria, Florida and Texas all recently setting single-day records for deaths from the pandemic. On July 29, one American was dying from Covid-19 every minute with the total number of infections approaching 4.4 million. Studies have found that men are dying at nearly twice the rate of women in the U.S. while the pandemic is proving especially devastating for black Americans who are dying at nearly three times the rate of white people." https://www.statista.com/chart/22430/coronavirus-deaths-by-race-in-the-us/
"That's according to The COVID Tracking Project who state that 30,648 black lives have been lost to the coronavirus to date, accounting for 23 percent of all U.S. deaths where race is known. The deaths were broken down by race or ethnicity with 74 black Americans dying per 100,000 people compared to 30 white Americans per 100,000 people as of July 30, 2020."
Niall McCarthy, Data Journalist https://www.statista.com/chart/22430/coronavirus-deaths-by-race-in-the-us/ Photo United Nations COVID-19 Response on Unsplash
Covid-19
Facebook
TwitterTHIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Facebook
TwitterBackgroundAccording to one USA Renal Data System report, 57% of end-stage renal disease (ESRD) cases are attributed to hypertensive and diabetic nephropathy. Yet, trends in hypertension related ESRD mortality rates in adults ≥ 35 years of age have not been studied.ObjectivesThe aim of this retrospective study was to analyze the different trends hypertension related ESRD death rates among adults in the United States.MethodsDeath records from the CDC (Centers for Disease Control and Prevention Wide-Ranging OnLine Data for Epidemiologic Research) database were analyzed from 1999 to 2020 for hypertension related ESRD mortality in adults ≥ 35 years of age. Age-Adjusted mortality rates (AAMRs) per 100,000 persons and annual percent change (APC) were calculated and stratified by year, sex, race/ethnicity, place of death, and geographic location.ResultsHypertension-related ESRD caused a total of 721,511 deaths among adults (aged ≥ 35 years) between 1999 and 2020. The overall AAMR for hypertension related ESRD deaths in adults was 9.70 in 1999 and increased all the way up to 43.7 in 2020 (APC: 9.02; 95% CI: 8.19-11.04). Men had consistently higher AAMRs than woman during the analyzed years from 1999 (AAMR men: 10.8 vs women: 9) to 2020 (AAMR men: 52.2 vs women: 37.2). Overall AAMRs were highest in Non-Hispanic (NH) Black or African American patients (45.7), followed by NH American Indian or Alaska Natives (24.7), Hispanic or Latinos (23.4), NH Asian or Pacific Islanders (19.3), and NH White patients (15.4). Region-wise analysis also showed significant variations in AAMRs (overall AAMR: West 21.2; South: 21; Midwest: 18.3; Northeast: 14.2). Metropolitan areas had slightly higher AAMRs (19.1) than nonmetropolitan areas (19). States with AAMRs in 90th percentile: District of Columbia, Oklahoma, Mississippi, Tennessee, Texas, and South Carolina, had roughly double rates compared to states in 10th percentile.ConclusionsOverall hypertension related ESRD AAMRs among adults were seen to increase in almost all stratified data. The groups associated with the highest death rates were NH Black or African Americans, men, and populations in the West and metropolitan areas of the United States. Strategies and policies targeting these at-risk groups are required to control the rising hypertension related ESRD mortality.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Around 7.7% of Americans have asthma, including 20.2 million adults and 4.6 million children. This study examines asthma mortality trends and disparities across U.S. demographic and geographic groups from 1999 to 2020. A retrospective analysis was conducted using the CDC WONDER database to examine asthma-related deaths in the U.S. from 1999 to 2020. Age-adjusted mortality rates (AAMRs) and crude mortality rates (CMRs) per 100,000 were calculated. Trends and annual percent changes (APCs) were assessed overall and stratified by sex, race, region, and age. From 1999 to 2020, the U.S. recorded 221 161 asthma-related deaths (AAMR: 3.07), mostly in medical facilities. Mortality declined from 1999 to 2018 (APC: −1.53%) but surged from 2018 to 2020 (APC: 28.63%). Females, NH Blacks, and NH American Indians had the highest mortality rates. Older adults (≥65) had the greatest burden, with younger groups showing notable increases post-2018. Rural areas and the West reported slightly higher rates than urban and other regions. Hawaii and the District of Columbia had the highest AAMRs, while Florida and Nevada had the lowest. Asthma-related mortality in the U.S. declined until 2018 but sharply increased from 2018 to 2020, with rises across all demographic groups, regions, and settings. Females, NH Blacks, and older adults consistently had higher mortality rates, while younger age groups showed recent alarming increases. Targeted interventions are urgently needed to address inequities and recent mortality surges.
Facebook
TwitterIndicator : Business DemographyTheme: BusinessSource : Office for National Statistics (ONS) - Business demography, quarterly experimental statisticsFrequency : QuarterlyDefinition : This dataset shows quarterly business births and deaths in the Black Country between 2020-2025. Business births means new business registrations, business death means the business has ceased to trade.Latest Period : July to September 2025Released : October 2025Next Update : January 2026Link:https://www.ons.gov.uk/businessindustryandtrade/business/activitysizeandlocation/datasets/businessdemographyquarterlyexperimentalstatisticsuk
Facebook
Twitter"In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article
For more information about this story
This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.
2016 PoliceKillingUS DATASET
2017 PoliceKillingUS DATASET
2018 PoliceKillingUS DATASET
2019 PoliceKillingUS DATASET
2020 PoliceKillingUS DATASET
Features at the Dataset:
The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:
The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer w...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Maxim Van de Wynckel (Dataset creator), Beat Signer (Supervisor)
A Sphero Mini is a Bluetooth ball that can be controlled by a smartphone (or in our case a laptop). The Sphero Mini can be controlled by sending movement instructions to the Sphero consisting of a direction and speed. In this dataset, we placed a camera on top of a table to create a top-down view of the Sphero moving on the floor. The Sphero was instructed to move in a spiral trajectory from the bottom-right corner to the center of the area. The dataset contains the video recording of the Sphero moving, the input instructions given to the Sphero, and the sensor data retrieved from the Sphero. The dataset was used to evaluate the sensor fusion from various sources.
The dataset was recorded on Friday, November 27, 2020, at the Vrije Universiteit Brussel. The dataset was used in the paper: https://arxiv.org/abs/2101.05198
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4255950%2Fdcb88a3bba4be4a7d5483da9df600a98%2Fdemo-overview.png?generation=1740740962794602&alt=media" alt="">
The dataset was recorded in a 260cm (W) x 200cm (H) area on the floor. The origin (0, 0) is at the bottom-right corner of the video frames.
| Property | Value |
|---|---|
| Width (cm) | 260 |
| Height (cm) | 200 |
| Width (pixels) | 1040 |
| Height (pixels) | 800 |
| Corner 1 (pixels) | (307, 120) |
| Corner 2 (pixels) | (1473, 87) |
| Corner 3 (pixels) | (1899, 891) |
| Corner 4 (pixels) | (20, 1024) |
The input trajectory is defined and visualised in the input data. A spiral trajectory was given to the Sphero toy. The Sphero toy was instructed to move in a spiral trajectory from the bottom-right corner to the center of the area.
| Property | Value |
|---|---|
| Turns | 30 |
| Sensor Frequency | 50 |
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4255950%2F045e7ad9877f9d044f0b10a7c85cec89%2Finput_final.svg?generation=1740740987619685&alt=media" alt="">
| Property | Value |
|---|---|
| Model | Logitech Brio |
| FPS | 30 |
| Width | 1920 |
| Height | 1080 |
The processed data is available in the processed/ folder. The processing steps are as follows:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4255950%2Fce6f4757abf1d445c007a9039f83a1da%2Fimage_zoom_wrapped.png?generation=1740741003648666&alt=media" alt="">
The video frames are wrapped to a top-down view. Yellow markers were placed on the ground to help with the wrapping process (processed/video_frames_wrapped/).
The video frames are converted to HSV to help with the object detection process (processed/video_frames_hsv/).
The (HSV) video frames are converted to black and white to help with the object detection process (processed/video_frames_bw/).
The position of the Sphero is detected in each frame of the video recording. The X-Y coordinates of the Sphero are saved in processed/video_final.csv. Note that the origin (0, 0) is at the bottom-right corner. The position is converted from pixels (the pixel location in the video frame) to centimeters (the real-world location of the Sphero).
All sensor data from the Sphero toy were processed to match the orientation of the video frames.
misc/: Images and other files that are not part of the dataset itself.raw/: Contains the raw data files generated by OpenHPS.
raw/input_frames/: Contains the raw input frames (i.e, the instructions that were given to the Sphero). Each file is a JSON file containing an OpenHPS data frame.raw/sensor_frames/: Contains the raw output sensor data from the Sphero. Each file is a JSON file containing an OpenHPS data frame.raw/video_frames/: Contains the individual frames of the video recording.raw/output.avi: All the frames of the video recording stitched together.raw/dataset_info.json: Contains information about the dataset (primarily the camera and sensor frequency).processed/: Contains the processed data files processed by OpenHPS.
processed/video_frames_wrapped/: Contains the invidiual frames of the video recording wrapped to a top-down view (step 1).processed/video_frames_hsv/: Contains the individual frames of the video recording in HSV (step 2).processed/video_frames_bw/: Contains the individual frames of the video recording in black and white (step 3).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20
Facebook
TwitterNumber, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe COVID-19 pandemic has significantly impacted global health, with diverse factors influencing the risk of death among reported cases. This study mainly analyzes the main characteristics that have contributed to the increase or decrease in the risk of death among Severe Acute Respiratory Syndrome (SARS) cases classified as COVID-19 reported in southeast Brazil from 2020 to 2023.MethodsThis cohort study utilized COVID-19 notification data from the Sistema de Vigilância Epidemiológica (SIVEP) information system in the southeast region of Brazil from 2020 to 2023. Data included demographics, comorbidities, vaccination status, residence area, and survival outcomes. Classical Cox, Cox mixed effects, Prentice, Williams & Peterson (PWP), and PWP fragility models were used to assess the risk of dying over time.ResultsAcross 987,534 cases, 956,961 hospitalizations, and 330,343 deaths were recorded over the period. Mortality peaked in 2021. The elderly, males, black individuals, lower-educated, and urban residents faced elevated risks. Vaccination reduced death risk by around 20% and 13% in 2021 and 2022, respectively. Hospitalized individuals had lower death risks, while comorbidities increased risks by 20–26%.ConclusionThe study identified demographic and comorbidity factors influencing COVID-19 mortality. Rio de Janeiro exhibited the highest risk, while São Paulo had the lowest. Vaccination significantly reduces death risk. Findings contribute to understanding regional mortality variations and guide public health policies, emphasizing the importance of targeted interventions for vulnerable groups.
Facebook
TwitterVictims of gang-related homicides (total number of homicide victims; number of homicide victims - unknown gang-relation; number of homicide victims - known gang relation; number of gang-related homicide victims; percentage of gang-related homicide victims; rate (per 100,000 population) of gang-related homicide victims), Canada and regions, 1999 to 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Effects of explicit racial attitudes and implicit racial attitudes on COVID-19 deaths, January 22, 2020 to August 31, 2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortality rates of cardiorenal- and heart failure-related deaths, by selected demographic factors, 2011–2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveU.S. drug-related overdose deaths and Emergency Department (ED) visits rose in 2020 and again in 2021. Many academic studies and the news media attributed this rise primarily to increased drug use resulting from the societal disruptions related to the coronavirus (COVID-19) pandemic. A competing explanation is that higher overdose deaths and ED visits may have reflected a continuation of pre-pandemic trends in synthetic-opioid deaths, which began to rise in mid-2019. We assess the evidence on whether increases in overdose deaths and ED visits are likely to be related primarily to the COVID-19 pandemic, increased synthetic-opioid use, or some of both.MethodsWe use national data from the Centers for Disease Control and Prevention (CDC) on rolling 12-month drug-related deaths (2015–2021); CDC data on monthly ED visits (2019-September 2020) for EDs in 42 states; and ED visit data for 181 EDs in 24 states staffed by a national ED physician staffing group (January 2016-June 2022). We study drug overdose deaths per 100,000 persons during the pandemic period, and ED visits for drug overdoses, in both cases compared to predicted levels based on pre-pandemic trends.ResultsMortality. National overdose mortality increased from 21/100,000 in 2019 to 26/100,000 in 2020 and 30/100,000 in 2021. The rise in mortality began in mid-to-late half of 2019, and the 2020 increase is well-predicted by models that extrapolate pre-pandemic trends for rolling 12-month mortality to the pandemic period. Placebo analyses (which assume the pandemic started earlier or later than March 2020) do not provide evidence for a change in trend in or soon after March 2020. State-level analyses of actual mortality, relative to mortality predicted based on pre-pandemic trends, show no consistent pattern. The state-level results support state heterogeneity in overdose mortality trends, and do not support the pandemic being a major driver of overdose mortality.ED visits. ED overdose visits rose during our sample period, reflecting a worsening opioid epidemic, but rose at similar rates during the pre-pandemic and pandemic periods.ConclusionThe reasons for rising overdose mortality in 2020 and 2021 cannot be definitely determined. We lack a control group and thus cannot assess causation. However, the observed increases can be largely explained by a continuation of pre-pandemic trends toward rising synthetic-opioid deaths, principally fentanyl, that began in mid-to-late 2019. We do not find evidence supporting the pandemic as a major driver of rising mortality. Policymakers need to directly address the synthetic opioid epidemic, and not expect a respite as the pandemic recedes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Decedent characteristics of cardiorenal and heart failure deaths, 2011–2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Distribution of participants by select characteristics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Severity of illness markers and comorbid conditions based on ICD-10 Codes recorded within one year prior to the COVID-19 hospital admission.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated prevalence of COVID-19 infection by select characteristics.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.