The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
This is a countrywide traffic accident dataset, which covers 49 states of the United States. The data is continuously being collected from February 2016, using several data providers, including two APIs which provide streaming traffic event data. These APIs broadcast traffic events captured by a variety of entities, such as the US and state departments of transportation, law enforcement agencies, traffic cameras, and traffic sensors within the road-networks. Currently, there are about 4.2 million accident records in this dataset.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
This indicator provides information about the mortality rate from motor vehicle crashes and traffic-related injuries, including among pedestrians. Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Motor vehicle crashes are a leading cause of death from unintentional injury both in Los Angeles County and in the US. While many factors contribute to motor vehicle crash mortality, the built environment plays a critical role. Communities that are exposed to heavy traffic or that lack adequate walking infrastructure for pedestrians have higher rates of motor vehicle crash-related injuries and deaths. They are also more impacted by traffic-related environmental hazards, such as vehicle emissions and air pollution. In Los Angeles County, many of these communities are also home to a large number of low-income residents. Thus, motor vehicle crash mortality can be viewed as an environmental justice issue.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Fatalities: Per One Million Vehicle-km data was reported at 7.805 Ratio in 2023. This records a decrease from the previous number of 8.265 Ratio for 2022. United States US: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 8.404 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 10.731 Ratio in 1994 and a record low of 6.725 Ratio in 2014. United States US: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC IRTAD - Data refer to road motor vehicle traffic of motorised two-wheelers, passenger cars, goods road motor vehicles and buses. [STAT_CONC_DEF] ROAD TRAFFIC IRTAD - Data are calculated using automatic and manual roadside traffic counts.
The dataset contains information on the Motor vehicle fatalities on U.S. roads with time of the accidents, Day of the accidents and weather conditions. National Transportation Statistics presents statistics on the U.S. transportation system, including its physical components, safety record, economic performance, the human and natural environment, and national security.
Data that that populates the Vision Zero View map, which can be found at www.nycvzv.info Vision Zero is the City's goal for ending traffic deaths and injuries. The Vision Zero action plan can be found at http://www.nyc.gov/html/visionzero/pdf/nyc-vision-zero-action-plan.pdf Crash data is obtained from the Traffic Accident Management System (TAMS), which is maintained by the New York City Police Department (NYPD). Only crashes with valid geographic information are mapped. All midblock crashes are mapped to the nearest intersection. Injuries and fatalities are grouped by intersection and summarized by month and year. This data is queried and aggregated on a monthly basis and is current as of the query date. Current year data is January to the end of the latest full month. All mappable crash data is represented on the simplified NYC street model. Crashes occurring at complex intersections with multiple roadways are mapped onto a single point. Injury and fatality crashes occurring on highways are excluded from this data. Please note that this data is preliminary and may contain errors, accordingly, the data on this site is for informational purposes only. Although all attempts to provide the most accurate information are made, errors may be present and any person who relies upon this data does so at their own risk.
In 2021, more than 44,000 male drivers were involved in fatal crashes in U.S. road traffic, which accounted for 72.3 percent of the total, while female drivers were involved in about 15,100 fatal crashes. The number of drivers who were involved in fatal crashes has shown an increase of about 16.2 percent from 2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Traffic: Vehicle-km per One Thousand Units of Current USD GDP data was reported at 191.948 Ratio in 2023. This records a decrease from the previous number of 199.804 Ratio for 2022. United States US: Road Traffic: Vehicle-km per One Thousand Units of Current USD GDP data is updated yearly, averaging 325.394 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 520.660 Ratio in 1994 and a record low of 191.948 Ratio in 2023. United States US: Road Traffic: Vehicle-km per One Thousand Units of Current USD GDP data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC IRTAD - Data refer to road motor vehicle traffic of motorised two-wheelers, passenger cars, goods road motor vehicles and buses. [STAT_CONC_DEF] ROAD TRAFFIC IRTAD - Data are calculated using automatic and manual roadside traffic counts.
In 2023, China recorded 60,028 fatalities in traffic accidents across the country. The number of fatalities has increased from 60,676in the previous year. Road traffic in China The number of road traffic fatalities in China varies greatly from region to region. Guangdong and Hubei had been the provinces with the highest number of traffic fatalities. All located in the eastern coastal area of China, they had also been the regions with the most traffic accidents in 2023. On the contrary, only a small number of fatalities had been reported in central and western regions of China. Reasons for this imbalance may be found in less traffic volume as well as the existence of fewer urban congested areas.Since 2016, the number of casualties and fatalities from traffic accidents in China has increased significantly, reaching 25,3895 injuries and 60,028 deaths in 2023. Nevertheless, traffic accidents have emerged as one of the leading causes of death in China. The primary reasons may be unregulated road works and a lack of awareness among Chinese drivers. The development of neither road infrastructure nor driving behavior in China had been able to keep up with the increasing number of traffic participants and registered cars. As of 2003, only 24 million vehicles had been registered in China, whereas by 2019 that number had skyrocketed to 253.76 million cars. In 2023 alone, the number of newly registered vehicles in China had amounted to around 24.5 million cars.
These data represent the Age-Adjusted Colorado County Mortality Rate Per 100,000 Persons for Motor Vehicle Accident as the Underlying Cause of Death (2015-2019). Population estimates for the denominator are calculated from the 2015-2019 American Community Survey. These data are from the Colorado Department of Public Health and Environment Vital Records Death Dataset and are published annually by the Colorado Department of Public Health and Environment.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
This is a subset of a larger dataset. This dataset includes pedestrians and cyclists killed in traffic collisions in 2021.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.The Fatality Analysis Reporting System (FARS) dataset is as of December 18, 2020, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This current dataset is for FARS 2019 data. One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is to reduce the staggering human toll and property damage that motor vehicle traffic crashes impose on our society. FARS is a census of fatal motor vehicle crashes with a set of data files documenting all qualifying fatalities that occurred within the 50 States, the District of Columbia, and Puerto Rico since 1975. To qualify as a FARS case, the crash had to involve a motor vehicle traveling on a traffic way customarily open to the public, and must have resulted in the death of a motorist or a non-motorist within 30 days of the crash. This data file contains information about crash characteristics and environmental conditions at the time of the crash. There is one record per crash. On the NHTSA website, raw FARS data are made available to the public in Statistical Analysis System (SAS) data files as well as comma-separated values (CSV) files. Current and past raw FARS data are available at: https://www.nhtsa.gov/node/97996/251. The FARS Coding and Editing Manual contains a detailed description of each data element including coding instructions and attribute definitions. The Coding Manual is published for each year of data collection, and current and past manuals are currently available at: https://crashstats.nhtsa.dot.gov/#/DocumentTypeList/23.
The Fataility Analysis Reporting System (FARS) dataset is as of July 1, 2017, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is to reduce the staggering human toll and property damage that motor vehicle traffic crashes impose on our society. FARS is a census of fatal motor vehicle crashes with a set of data files documenting all qualifying fatalities that occurred within the 50 States, the District of Columbia, and Puerto Rico since 1975. To qualify as a FARS case, the crash had to involve a motor vehicle traveling on a trafficway customarily open to the public, and must have resulted in the death of a motorist or a non-motorist within 30 days of the crash. This data file contains information about crash characteristics and environmental conditions at the time of the crash. There is one record per crash. Please note: 207 records in this database were geocoded to latitude and logtitude of 0,0 due to lack of location information or errors in the reported locations. FARS data are made available to the public in Statistical Analysis System (SAS) data files as well as Database Files (DBF). Over the years changes have been made to the type of data collected and the way the data are presented in the SAS data files. Some data elements have been dropped and new ones added, coding of individual data elements has changed, and new SAS data files have been created. Coding changes and the years for which individual data items are available are shown in the “Data Element Definitions and Codes” section of this document. The FARS Coding and Editing Manual contains a detailed description of each SAS data elements including coding instructions and attribute definitions. The Coding Manual is published for each year of data collection. Years 2001 to current are available at: http://www-nrd.nhtsa.dot.gov/Cats/listpublications.aspx?Id=J&ShowBy=DocType Note: In this manual the word vehicle means in-transport motor vehicle unless otherwise noted.
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.