According to an analysis conducted in 2023 of over *** companies targeting children and families in the United States, only ** percent of the businesses had a privacy-protective mindset and did not sell data. Under the California Privacy Rights Act amendment, companies are supposed to disclose if they sell users' personal data. Around ** percent of companies did not disclose whether they engaged in such practices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Children out of school (% of primary school age) in United States was reported at 3.9822 % in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Children out of school (% of primary school age) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Total Families with Children under 18 Years Old with Married Couple (FMLWCUMC) from 1950 to 2024 about married, 18 years +, child, family, household survey, and USA.
The typical American picture of a family with 2.5 kids might not be as relevant as it once was: In 2023, there was an average of 1.94 children under 18 per family in the United States. This is a decrease from 2.33 children under 18 per family in 1960.
Familial structure in the United States
If there’s one thing the United States is known for, it’s diversity. Whether this is diversity in ethnicity, culture, or family structure, there is something for everyone in the U.S. Two-parent households in the U.S. are declining, and the number of families with no children are increasing. The number of families with children has stayed more or less constant since 2000.
Adoptions in the U.S.
Families in the U.S. don’t necessarily consist of parents and their own biological children. In 2021, around 35,940 children were adopted by married couples, and 13,307 children were adopted by single women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Egypt population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Egypt. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 29 (60.42% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Egypt Population by Age. You can refer the same here
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
The Native American Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.
The dataset includes over 1000 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.
To ensure robust model training and generalizability, images are captured under varied natural conditions:
Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:
This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.
This dataset is ideal for a wide range of computer vision use cases, including:
We maintain the highest ethical and security standards throughout the data lifecycle:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Many population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Many. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,528 (59.55% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Many Population by Age. You can refer the same here
children-stories-dataset
Note: This is an AI-generated dataset, so its content may be inaccurate or false. Source of the data: The dataset was generated using Fastdata library and claude-3-haiku-20240307 with the following input:
System Prompt
You are a helpful assistant.
Prompt Template
Generate Children's Stories with title, content and the corresponding habit on the following topic
Sample Input
{'idx': [0, 1], 'text':… See the full description on the dataset page: https://huggingface.co/datasets/asoria/children-stories-dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Deaths of children under five years of age per 1000 live births: The latest value from 2022 is 6 deaths per 1000 births, unchanged from 6 deaths per 1000 births in 2021. In comparison, the world average is 25 deaths per 1000 births, based on data from 187 countries. Historically, the average for the USA from 1960 to 2022 is 14 deaths per 1000 births. The minimum value, 6 deaths per 1000 births, was reached in 2020 while the maximum of 30 deaths per 1000 births was recorded in 1960.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Underweight: Weight for Age: Male: % of Children Under 5 data was reported at 0.500 % in 2012. This records a decrease from the previous number of 1.000 % for 2009. United States US: Prevalence of Underweight: Weight for Age: Male: % of Children Under 5 data is updated yearly, averaging 1.150 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 1.600 % in 2002 and a record low of 0.500 % in 2012. United States US: Prevalence of Underweight: Weight for Age: Male: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of underweight, male, is the percentage of boys under age 5 whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The data are based on the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data was reported at 0.700 % in 2012. This records an increase from the previous number of 0.500 % for 2009. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 0.550 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 0.800 % in 2005 and a record low of 0.100 % in 2001. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Clearwater population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Clearwater. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 68,894 (58.89% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Clearwater Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Kinder population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Kinder. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 1,093 (58.57% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Kinder Population by Age. You can refer the same here
CDC child growth charts consist of a series of percentile curves that illustrate the distribution of selected body measurements in U.S. children. Pediatric growth charts have been used by pediatricians, nurses, and parents to track the growth of infants, children, and adolescents in the United States since 1977. Growth charts are not intended to be used as a sole diagnostic instrument. Instead, growth charts are tools that contribute to forming an overall clinical impression for the child being measured.
This project undertook the systematic collection of first-generation data concerning the nature, extent, and seriousness of child sexual exploitation (CSE) in the United States. The project was organized around the following research objectives: (1) identification of the nature, extent, and underlying causes of CSE and the commercial sexual exploitation of children (CSEC) occurring in the United States, (2) identification of those subgroups of children that were at the greatest risk of being sexually exploited, (3) identification of subgroups of adult perpetrators of sex crimes against children, and (4) identification of the modes of operation and other methods used by organized criminal units to recruit children into sexually exploitative activities. The study involved surveying senior staff members of nongovernment organizations (NGOs) and government organizations (GOs) in the United States known to be dealing with persons involved in the transnational trafficking of children for sexual purposes. Part 1 consists of survey data from nongovernment organizations. These were local child and family agencies serving runaway and homeless youth. Part 2 consists of survey data from government organizations. These organizations were divided into local, state, and federal agencies. Local organizations included municipal law enforcement, county law enforcement, prosecutors, public defenders, and corrections. State organizations included state child welfare directors, prosecutors, and public defenders. Federal organizations included the Federal Bureau of Investigation, Federal Public Defenders, Immigration and Naturalization Service, United States Attorneys, United States Customs, and the United States Postal Service. Variables in Parts 1 and 2 include the organization's city, state, and ZIP code, the type of services provided or type of law enforcement agency, how the agency was funded, the scope of the agency's service area, how much emphasis was placed on CSEC as a policy issue or a service issue, conditions that might influence the number of CSEC cases, how staff were trained to deal with CSEC cases, how victims were identified, the number of children that experienced child abuse, sexual abuse, pornography, or other exploitation in 1999 and 2000 by age and gender, methods of recruitment, family history of victims, gang involvement, and substance abuse history of victims.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Belleville, IL population pyramid, which represents the Belleville population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Belleville Population by Age. You can refer the same here
https://www.icpsr.umich.edu/web/ICPSR/studies/38908/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38908/terms
The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, States and Territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 states, the District of Columbia, and the United States territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. Beginning with the 2020 files, the analytic data files are supplemented by four additional data files containing select policy information featured in the annual reports (prior to 2020, the full detail of the annual reports was reproduced as data files). The supplemental data files are available as 4 datasets (Datasets 33-36) and present key aspects of the differences in CCDF-funded programs across all states and territories as of October 1 of each year (2009-2022). The files include variables that are calculated using several variables from the analytic data files (Datasets 1-32) (such as copayment amounts for example family situations) and information that is part of the annual project reports (the annual Book of Tables) but not stored in the full database (such as summary market rate survey information from the CCDF plans). 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data provides historical summaries of total participation and meals served as part of the USDA's Food and Nutrition Service (FNS) School Breakfast Program. The summary data begins in 1969, the year that FNS was established to administer USDA's nutrition assistance program. The School Breakfast Program is a federally assisted meal program operating in public and nonprofit private schools and residential child care institutions. It began as a pilot project in 1966, and was made permanent in 1975. The School Breakfast Program is administered at the Federal level by the Food and Nutrition Service. At the State level, the program is usually administered by State education agencies, which operate the program through agreements with local school food authorities in more than 89,000 schools and institutions. School districts and independent schools that choose to take part in the breakfast program receive cash subsidies from the USDA for each meal they serve. In return, they must serve breakfasts that meet Federal requirements, and they must offer free or reduced price breakfasts to eligible children. Any child at a participating school may purchase a meal through the School Breakfast Program. Children from families with incomes at or below 130 percent of the Federal poverty level are eligible for free meals. Those with incomes between 130 percent and 185 percent of the poverty level are eligible for reduced-price meals. Resources in this dataset:Resource Title: School Breakfast Participation and Meals Served Data. File Name: sbsummar.xlsResource Description: Data are provided by federal fiscal year rather than calendar or school year. This includes the months of October through September. The total participation numbers for this data is based on a nine month average: October - May plus September.Resource Title: School Breakfast Participation and Meals Served Data. File Name: SchoolBreakfasts2.csvResource Description: Data are provided by federal fiscal year rather than calendar or school year. This includes the months of October through September. The total participation numbers for this data is based on a nine month average: October - May plus September. Participation and meals served numbers are counted in millions, and the free/reduced price meals is a percentage of total meals. 2] in the reduced price column indicates that these numbers were included with the free participation numbers. Resource Title: Data Dictionary. File Name: Data Dictionary_SchoolBreakfastParticipationMealsServed.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Many, LA population pyramid, which represents the Many population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Many Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Central population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Central. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 16,599 (56.07% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Central Population by Age. You can refer the same here
According to an analysis conducted in 2023 of over *** companies targeting children and families in the United States, only ** percent of the businesses had a privacy-protective mindset and did not sell data. Under the California Privacy Rights Act amendment, companies are supposed to disclose if they sell users' personal data. Around ** percent of companies did not disclose whether they engaged in such practices.