Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterNote: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.
This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.
The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.
The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.
The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset was retired on 2/7/2024.
This dataset switched to a weekly M-F cadence on 12/27/2022..
This data set includes the cumulative (total) number of Multisystem Inflammatory Syndrome in Children (MIS-C) cases and deaths in Virginia by report date. This data set was first published on May 24, 2020. When you download the data set, the dates will be sorted in ascending order, meaning that the earliest date will be at the top. To see data for the most recent date, please scroll down to the bottom of the data set. The Virginia Department of Health’s Thomas Jefferson Health District (TJHD) will be renamed to Blue Ridge Health District (BRHD), effective January 2021. More information about this change can be found here: https://www.vdh.virginia.gov/blue-ridge/name-change/
Facebook
TwitterAbstract Objectives: to characterize school-aged children, adolescents, and young people’s profile and their associations with positive COVID-19 test results. Methods: an observational and descriptive study of secondary data from the COVID-19 Panel in Espírito Santo State in February to August 2020. People suspected of COVID-19, in the 0–19-years old age group, were included in order to assess clinical data and demographic and epidemiological factors associated with the disease. Results: in the study period, 27,351 COVID-19 notification were registered in children, adolescents, and young people. The highest COVID-19 test confirmation was found in Caucasians and were 5-14 years age group. It was also observed that headache was the symptom with the highest test confirmation. Infection in people with disabilities was more frequent in the confirmed cases. The confirmation of cases occurred in approximately 80% of the notified registrations and 0.3% of the confirmed cases, died. Conclusion: children with confirmed diagnosis for COVID-19 have lower mortality rates, even though many were asymptomatic. To control the chain of transmission and reduce morbidity and mortality rates, it was necessaryto conduct more comprehensive research and promote extensive testing in the population.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Greetings everyone! I hope you find this dataset valuable for your COVID-19 models. It is aligned with SRK's Novel Corona Virus dataset. Feel free to upvote if you use it!
This dataset contains what I find as essential demographic information for every country specified in the submission COVID-19 competition file. Moreover, there is additional data which is critical in my point of view in order to predict the infection rate and mortality rate per country such as the number of COVID detection tests, detection date of 'patient zero' and initial restrictions dates. Please look at the columns description for the comprehensive explanation.
My
Facebook
TwitterIntroductionRecent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.Materials and methodsWe studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty.ResultsFor child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000–65,000 if it were administered simultaneously with a COVID-19 vaccine <200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600–6100. Estimated benefit-to-cost ratios vary but are consistently high.DiscussionEconomic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays.FundingThe contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico, one of the countries severely affected by COVID-19, accumulated more than 5. 1 all-cause excess deaths/1,000 inhabitants and 2.5 COVID-19 confirmed deaths/1,000 inhabitants, in 2 years. In this scenario of high SARS-CoV-2 circulation, we analyzed the effectiveness of the country's vaccination strategy that used 7 different vaccines from around the world, and focused on vaccinating the oldest population first. We analyzed the national dataset published by Mexican health authorities, as a retrospective cohort, separating cases, hospitalizations, deaths and excess deaths by wave and age group. We explored if the vaccination strategy was effective to limit severe COVID-19 during the active outbreaks caused by Delta and Omicron variants. Vaccination of the eldest third of the population reduced COVID-19 hospitalizations, deaths and excess deaths by 46–55% in the third wave driven by Delta SARS-CoV-2. These adverse outcomes dropped 74–85% by the fourth wave driven by Omicron, when all adults had access to vaccines. Vaccine access for the pregnant resulted in 85–90% decrease in COVID-19 fatalities in pregnant individuals and 80% decrease in infants 0 years old by the Omicron wave. In contrast, in the rest of the pediatric population that did not access vaccination before the period analyzed, COVID-19 hospitalizations increased >40% during the Delta and Omicron waves. Our analysis suggests that the vaccination strategy in Mexico has been successful to limit population mortality and decrease severe COVID-19, but children in Mexico still need access to SARS-CoV-2 vaccines to limit severe COVID-19, in particular those 1–4 years old.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of the different approaches to mitigate transmission of COVID-19 and provide information to children about COVID-19 (coronavirus) within the participating countries during the time of the study.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SARS-CoV-2 infection during pregnancy is not usually associated with significant adverse effects. However, in this study, we report a fetal death associated with mild COVID-19 in a 34-week-pregnant woman. The virus was detected in the placenta and in an unprecedented way in several fetal tissues. Placental abnormalities (MRI and anatomopathological study) were consistent with intense vascular malperfusion, probably the cause of fetal death. Lung histopathology also showed signs of inflammation, which could have been a contributory factor. Monitoring inflammatory response and coagulation in high-risk pregnant women with COVID-19 may prevent unfavorable outcomes, as shown in this case.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Since the president of Brazil, in an interview at Flow podcast on August 10, 2022, stated that in COVID, children are asymptomatic, almost never hospitalized, and rarely needed intensive care, which is a huge and dangerous lie. Based on Brazilian Health SUS data provided by the Bolsonaro government itself, we prove the ignorance and risk of mixing ideology and feelings with science and medicine. The most dangerous ignorance is not unknowing, but believing that they have knowledge, being miles away from it. Dataset provided by the opendataSUS platform with all patients notified with a diagnosis of COVID in Brazil between Jan/20 and Aug/22 under 12 years old. Number of cases, hospital admissions, ICU admissions and deaths.
Facebook
TwitterThe action plan for vaccination aims to protect Cambodians, protect the health system and reduce the socio-economic impact by minimizing the number of cases, illnesses, and deaths caused by COVID-19. The plan also aims to reduce the incidence, severity and mortality of COVID-19 and counteract the threat of new variants, especially Delta by providing COVID-19 vaccines to children and teenagers aged 12 to under 18 years, which is about 2 millions by the end of November 2021.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objectives: to describe epidemiological characteristics and deaths in children with cancer and COVID-19 at a reference hospital in Recife, Brazil. Methods: cohort involving children under the age of 19 underwent cancer treatment during April to July 2020. During the pandemic, real-time reverse transcriptase polymerase chain reaction assay (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS -CoV-2) in nasal / oropharyngeal swab were collected in symptomatic patients or before hospitalization. Those with detectable results were included in this cohort study. The outcomes were delayed on cancer treatment and death. Descriptive analysis was performed and presented in preliminary results. Results: 48 children participated in the cohort, mostly with hematological neoplasms (66.6%.),69% were male, median age was 5.5 years. The most frequent symptoms were fever (58.3%) and coughing (27.7%);72.9% required hospitalization, 20% had support in ICU and 10.5% on invasive ventilatory assistance.66.6% of the patients had their oncological treatment postponed, 16.6% died within 60 days after confirmation of SARS-CoV-2 infection. Conclusions: COVID-19 led a delay in the oncological treatment for children with cancer and a higher mortality frequency when compared to the historical series of the service. It would be important to analyze the risk factors to determine the survival impact.
Facebook
Twitter
Young Lives research has expanded to explore linking geographical data collected during the rounds to external datasets. Matching Young Lives data with administrative and geographic datasets significantly increases the scope for research in several areas, and may allow researchers to identify sources of exogenous variation for more convincing causal analysis on policy and/or early life circumstances.
Young Lives: Data Matching Series, 1900-2021 includes the following linked datasets:
1. Climate Matched Datasets (four YL study countries): Community-level GPS data has been matched with temperature and precipitation data from the University of Delaware. Climate variables are offered at the community level, with a panel data structure spanning across years and months. Hence, each community has a unique value of precipitation (variable PRCP) and temperature (variable TEMP), for each year and month pairing for the period 1900-2017.
2. COVID-19 Matched Dataset (Peru only): The YL Phone Survey Calls data has been matched with external data sources (The Peruvian Ministry of Health and the National Information System of Deaths in Peru). The matched dataset includes the total number of COVID cases per 1,000 inhabitants, the total number of COVID deaths by district and per 1,000 inhabitants; the total number of excess deaths per 1,000 inhabitants and the number of lockdown days in each Young Lives district in Peru during August 2020 to December 2021.
Further information is available in the PDF reports included in the study documentation.
Facebook
TwitterIn the time of epidemics, what is the status of HIV AIDS across the world, where does each country stands, is it getting any better. The data set should be helpful to explore much more about above mentioned factors.
The data set contains data on
- No. of people living with HIV AIDS
- No. of deaths due to HIV AIDS
- No. of cases among adults (19-45)
- Prevention of mother-to-child transmission estimates
- ART (Anti Retro-viral Therapy) coverage among people living with HIV estimates
- ART (Anti Retro-viral Therapy) coverage among children estimates
https://github.com/imdevskp/hiv_aids_who_unesco_data_cleaning
Photo by Anna Shvets from Pexels https://www.pexels.com/photo/red-ribbon-on-white-surface-3900425/
- COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report
- MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019
- Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset
- H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset
- SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset
- HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterNumber of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Facebook
TwitterRECOVERY is a randomised trial investigating whether treatment with Lopinavir-Ritonavir, Hydroxychloroquine, Corticosteroids, Azithromycin, Colchicine, IV Immunoglobulin (children only), Convalescent plasma, Casirivimab+Imdevimab, Tocilizumab, Aspirin, Baricitinib, Infliximab, Empagliflozin, Sotrovimab, Molnupiravir, Paxlovid or Anakinra (children only) prevents death in patients with COVID-19.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.