The typical American picture of a family with 2.5 kids might not be as relevant as it once was: In 2023, there was an average of 1.94 children under 18 per family in the United States. This is a decrease from 2.33 children under 18 per family in 1960.
Familial structure in the United States
If there’s one thing the United States is known for, it’s diversity. Whether this is diversity in ethnicity, culture, or family structure, there is something for everyone in the U.S. Two-parent households in the U.S. are declining, and the number of families with no children are increasing. The number of families with children has stayed more or less constant since 2000.
Adoptions in the U.S.
Families in the U.S. don’t necessarily consist of parents and their own biological children. In 2021, around 35,940 children were adopted by married couples, and 13,307 children were adopted by single women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Egypt population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Egypt. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 29 (60.42% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Egypt Population by Age. You can refer the same here
As recommended by the Health and Human Services Commission (HHSC) to ensure consistency across all HHSC agencies, in 2012 DFPS adopted the HHSC methodology on how to categorize race and ethnicity. As a result, data broken down by race and ethnicity in 2012 and after is not directly comparable to race and ethnicity data in 2011 and before.
The population totals may not match previously printed DFPS Data Books. Past population estimates are adjusted based on the U.S. Census data as it becomes available. This is important to keep the data in line with current best practices, but may cause some past counts, such as Abuse/Neglect Victims per 1,000 Texas Children, to be recalculated.
Population Data Source - Population Estimates and Projections Program, Texas State Data Center, Office of the State Demographer and the Institute for Demographic and Socioeconomic Research, The University of Texas at San Antonio.
Current population estimates and projections data as of December 2020.
Visit dfps.texas.gov for information on all DFPS programs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Crouch population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Crouch. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 116 (54.72% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Crouch Population by Age. You can refer the same here
NOTE: On October 19, 2021, estimates for 2016–2018 by health insurance status were revised to correct errors. Changes are highlighted and tagged at https://www.cdc.gov/nchs/data/hus/2019/012-508.pdf Data on health conditions among children under age 18, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Health Interview Survey, Family Core and Sample Child questionnaires. For more information on the National Health Interview Survey, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data was reported at 0.700 % in 2012. This records an increase from the previous number of 0.500 % for 2009. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 0.550 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 0.800 % in 2005 and a record low of 0.100 % in 2001. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blawnox population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Blawnox. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 867 (56.59% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blawnox Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Moscow town population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Moscow town. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 408 (60.71% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Moscow town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Children out of school (% of primary school age) in United States was reported at 3.9822 % in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Children out of school (% of primary school age) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100. Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports. In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the g
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data was reported at 0.400 % in 2012. This records a decrease from the previous number of 0.700 % for 2009. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data is updated yearly, averaging 0.800 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 1.200 % in 1991 and a record low of 0.400 % in 2012. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of underweight, female, is the percentage of girls under age 5 whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The data are based on the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Deaths of children under five years of age per 1000 live births: The latest value from 2022 is 6 deaths per 1000 births, unchanged from 6 deaths per 1000 births in 2021. In comparison, the world average is 25 deaths per 1000 births, based on data from 187 countries. Historically, the average for the USA from 1960 to 2022 is 14 deaths per 1000 births. The minimum value, 6 deaths per 1000 births, was reached in 2020 while the maximum of 30 deaths per 1000 births was recorded in 1960.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Live Oak County population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Live Oak County. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 6,787 (59.31% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak County Population by Age. You can refer the same here
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Native American Child Faces Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, child identification models, and other facial recognition technologies.
This dataset comprises over 3,000 child image sets, divided into participant-wise sets with each set including:
The dataset includes contributions from a diverse network of children across Native American countries:
To ensure high utility and robustness, all images are captured under varying conditions:
Each facial image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify children's faces across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Clifton population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Clifton. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 55,513 (62.20% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Clifton Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Many population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Many. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,528 (59.55% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Many Population by Age. You can refer the same here
Families of tax filers; Census families with children by age of children and children by age groups (final T1 Family File; T1FF).
This layer shows children by nativity of parents by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of children who are in immigrant families (children who are foreign born or live with at least one parent who is foreign born). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B05009Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Percent of People of All Ages in Poverty for United States (PPAAUS00000A156NCEN) from 1989 to 2023 about percent, child, poverty, and USA.
The typical American picture of a family with 2.5 kids might not be as relevant as it once was: In 2023, there was an average of 1.94 children under 18 per family in the United States. This is a decrease from 2.33 children under 18 per family in 1960.
Familial structure in the United States
If there’s one thing the United States is known for, it’s diversity. Whether this is diversity in ethnicity, culture, or family structure, there is something for everyone in the U.S. Two-parent households in the U.S. are declining, and the number of families with no children are increasing. The number of families with children has stayed more or less constant since 2000.
Adoptions in the U.S.
Families in the U.S. don’t necessarily consist of parents and their own biological children. In 2021, around 35,940 children were adopted by married couples, and 13,307 children were adopted by single women.