The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
The Kenya National Micronutrients Survey (NMS) 2011 was the first NMS to be carried by the Kenya National Bureau of Statistics. The purpose of this survey is to ensure the quality of HIV testing and the interpretation of results, both in the laboratory and in the community. Fort HIV testing, it is extremely important that "the correct results go to the right client". The identity of clients and the labelling of test devices should therefore be preserved properly.
National
The survey covered household members (usual residents), womens questinnaire( aged 15-49 years) resident in the household, children( aged 0-6-49months), School age children (aged 5-14 years) resident in the household and Men questionnire (aged 15-54 year).
Sample survey data [ssd]
Sample size estimation The sample size required for each stratum was based on the estimated prevalence for each nutritional indicator, the desired precision for each indicator, an assumed design effect of 2.0, and a non-response of 10% (including refusals) at the household level and 10% at the individual levels for children 6-59 months of age and non-pregnant women. An additional non-response rate of 10% (for a total 30% non-response rate) was assumed for the men and SAC 5-14 years old.
Sampling design In 2010, Kenya ratified a new constitution which established 47 county governments. This change has highlighted the need for national surveys to collect information beyond the provincial level, and move towards collection of county-level estimates. However, obtaining county-level estimates with adequate precision were not considered feasible in KNMS due to limitations in sample size and resources. Therefore KNMS consisted of the three domains as defined earlier. The sampling frame for the 2010 KMNS was based on the National Sample Survey and Evaluation Programme (NASSEP IV) master sampling frame maintained by the Kenya National Bureau of Statistics (KNBS). Administratively, Kenya is divided into 8 provinces. In turn, each province is The Kenya National Micronutrient Survey 2011 subdivided into districts, each district into divisions, each division into locations and each location into sub-locations. In addition to these administrative units, during the last 1999 population census, each sub-location was subdivided into census Enumeration Areas (EAs) i.e. small geographic units with clearly defined boundaries. As defined in the 1999 census, Kenya has eight provinces, 69 districts, and approximately 62,000 EAs. The list of EAs is grouped by administrative units and includes information on the number of households and population. This information was used in 2002 to design a master sample with about 1,800 selected EAs. The cartographic material for each EA in the master sample was updated in the field. The resulting master sampling frame was NASSEP IV which is still currently used by KNBS. The NASSEP IV master frame is a two-stage stratified cluster sample format. The first stage is a selection of Primary Sampling Units (PSUs), which are the EAs using probability proportional to measure of size (PPMOS) method. The second stage involves the selection of households for various surveys. EAs are selected with a basis of one Measure of Size (MOS) defined as the ultimate cluster with an average of 100 households and constitute one (or more) EAs. Although consideration was given to development of a new master frame for KNMS, time and other resource constraints dictated that the sample frame of this survey was NASSEP IV. The KNMS sample was selected using a stratified two-stage cluster design consisting of 296 clusters, 123 in the urban and 173 in the rural areas. From each cluster a total of 10 households were selected using systematic simple random sampling. For the KNMS survey, an urban area was defined as "an area with an increased density of human-created structures in comparison to the areas surrounding it and has a population of 2,000 people and above". Using this definition, urban areas included Cities, Municipalities, Town Councils, Urban Councils and all District Headquarters. A rural area was defined as an isolated large area of an open country in reference to open fields with peoples whose main economic activity was farming. Every attempt was made to conduct interviews in the 10 selected households, and one additional visit was made to ascertain this compliance in cases of absence of household members to minimize potential bias. Non responding households were not replaced.
Face-to-face [f2f]
The survey covers household members questionnaire (usual residents), women questinnaire ( aged 15-49 years), preschool children questionnarie( aged 6-59 months), school age children questionnaire (aged 5-14 years) and men questionnire (aged 15-54 year). The hosehold member questionnaire includes: Identification, Interviewer Visits, Socio demographic characteristics, Socio-economic characteristics, Food fortification, Wheat flour fortification, Salt fortification, Sugar fortification, Oils/fats fortification, Interviewer's observations. The women questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, WRA Health questions. The school age children questionnaire includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Dietary Diversity Score Questions, Infant Feeding Practice Questions children 6-35 months, Interviewer Observations, The preschool children questionnarie includes: Identification, Interviewer Visits, Micronutrient Supplementation and Pica Questions, Child Health questions, Interviewer Observations. The men questionnarie includes: Identification, Interviewer Visits, Health questions, Interviewer Observations.
The field questionnaires baring household characteristics, individual population characteristics, and anthropometrics measurements were double entered into a computer database designed using MS-Access application. Regular file back-up was done using flash disks and external hard disk to avoid any loss or tampering. Data comparison was done using Epi-info version 7.0. Data cleaning and validation was performed to achieve clean datasets. The datasets were exported into a Statistical Package format (IBM® SPSS® Statistics version 20.0). The laboratory results were entered in excel format and later exported into a Statistical Package format (IBM® SPSS®Statistics version 20.0). Data merging exercise was systematically conducted using the four datasets i.e. household characteristics, individual population characteristics, anthropometrics measurements, and laboratory results. Each of the five populations namely; Pre-school children (PSC), School aged children (SAC), Pregnant women (PW), Non-pregnant women (NPW), and Men were separately merged. Data merging was conducted as follows: STEP1: The 'laboratory results' file was first merged to the 'anthropometrics' file using 'LABLE NUMBER' as the unique identifier. STEP2: The merged 'laboratory + anthropometrics' file was merged to individual population characteristics file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. STEP3: The merged 'laboratory + anthropometrics + individual population characteristics' file was merged to the 'household characteristics' file using a merging variable constructed by concatenating 'CLUSTER NUMBER + HOUSEHOLD NUMBER + LINE NUMBER' as the unique identifier. Five master-files were backed-up for safe keeping and a copy was shared with the statisticians for analysis. All the questionnaires and laboratory forms were filed and stored in lockable drawers for confidentiality.
The validated data was exported to SPSS Version 20 for analysis.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.