This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions
A dataset listing Illinois cities by population for 2024.
https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida cities by population for 2024.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
This dataset illustrates the largest difference between high and low temperatures and the smallest difference between high and low temperatures in cities with 50,000 people or more. A value of -1 means that the data was not applicable. Also included are the rankings, the inverse ranking to be used for mapping purposes, the popualtion, the name of city and state, and the temperature degree difference. Source City-Data URL http//www.city-data.com/top2/c489.html http//www.city-data.com/top2/c490.html Date Accessed November 13,2007
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
Population totals for groupings commonly used in other datasets.
Not all values are available for all years.
Note that because the "Citywide" rows roll up the values from the individual ZIP Codes and the "Age 0-4," "Age 5-11," "Age 12-17," "Age 5+," "Age 18+," and "Age 65+" columns overlap other age categories, as well as each other in some cases, care should be taken in summing values to avoid accidental double-counting. The "Age 5-11" and "Age 12-17" columns only include children who live in households.
Data Sources: U.S. Census Bureau American Community Survey (ACS) 5-year estimates (ZIP Code) and 1-year estimates (Citywide). The U.S. Census Bureau did not release standard 1-year estimates from the 2020 ACS. In 2020 only, 5-year estimates were used for the Citywide estimates.
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York cities by population for 2024.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.
Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.
Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.
The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2015, 2017, and 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
https://www.mississippi-demographics.com/terms_and_conditionshttps://www.mississippi-demographics.com/terms_and_conditions
A dataset listing Mississippi cities by population for 2024.
This dataset illustrates the cities with the largest wind speed differences. Also included are the city and state, the population, the speed differnce, the ranking, and the inverse ranking (to be used only for mapping purposes). Source: City-Data URL: http://www.city-data.com/top2/c466.html Date Accessed: November 9, 2007
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This data set illustrates where the youth of the nation reside. Included in the data set are the rankings of city by age and the median age of the city. Source: Census data, Onboard 2006 projection URL: http://money.cnn.com/magazines/moneymag/bplive/2007/top25s/youngest.html Date Accessed: October 16, 2007
The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. In New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), the Office of Management and Budget (OMB) has defined an alternative county subdivision (generally cities and towns) based definition of Core Based Statistical Areas (CBSAs) known as New England City and Town Areas (NECTAs). NECTAs are defined using the same criteria as Metropolitan Statistical Areas and Micropolitan Statistical Areas and are identified as either metropolitan or micropolitan, based, respectively, on the presence of either an urban area of 50,000 or more population or an urban cluster of at least 10,000 and less than 50,000 population. A NECTA containing a single core urban area with a population of at least 2.5 million may be subdivided to form smaller groupings of cities and towns referred to as NECTA Divisions. The generalized boundaries in this file are based on those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
The United States MSA Boundaries data set contains the boundaries for metropolitan statistical areas in the United States. The data set contains information on location, identification, and size. The database includes metropolitan boundaries within all 50 states, the District of Columbia, and Puerto Rico. The general concept of a metropolitan area (MA) is one of a large population nucleus, together with adjacent communities that have a high degree of economic and social integration with that nucleus. Some MAs are defined around two or more nuclei. Each MA must contain either a place with a minimum population of 50,000 or a U.S. Census Bureau-defined urbanized area and a total MA population of at least 100,000 (75,000 in New England). An MA contains one or more central counties. An MA also may include one or more outlying counties that have close economic and social relationships with the central county. An outlying county must have a specified level of commuting to the central counties and also must meet certain standards regarding metropolitan character, such as population density, urban population, and population growth. In New England, MAs consist of groupings of cities and towns rather than whole counties. The territory, population, and housing units in MAs are referred to as "metropolitan." The metropolitan category is subdivided into "inside central city" and "outside central city." The territory, population, and housing units located outside territory designated "metropolitan" are referred to as "non-metropolitan." The metropolitan and non-metropolitan classification cuts across the other hierarchies; for example, generally there are both urban and rural territory within both metropolitan and non-metropolitan areas.
https://www.tennessee-demographics.com/terms_and_conditionshttps://www.tennessee-demographics.com/terms_and_conditions
A dataset listing Tennessee cities by population for 2024.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.