Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City population size is a crucial measure when trying to understand urban life. Many socio-economic indicators scale superlinearly with city size, whilst some infrastructure indicators scale sublinearly with city size. However, the impact of size also extends beyond the city’s limits. Here, we analyse the scaling behaviour of cities beyond their boundaries by considering the emergence and growth of nearby cities. Based on an urban network from African continental cities, we construct an algorithm to create the region of influence of cities. The number of cities and the population within a region of influence are then analysed in the context of urban scaling. Our results are compared against a random permutation of the network, showing that the observed scaling power of cities to enhance the emergence and growth of cities is not the result of randomness. By altering the radius of influence of cities, we observe three regimes. Large cities tend to be surrounded by many small towns for small distances. For medium distances (above 114 km), large cities are surrounded by many other cities containing large populations. Large cities boost urban emergence and growth (even more than 190 km away), but their scaling power decays with distance.
The African Cities Population Database (ACPD) has been produced by the Birkbeck College of the University of London in 1990 at the request of the United Nations Environment Programme (UNEP) in Nairobi, Kenya. The database contains head counts for 479 cities in Africa which either have a population of over 20,000 or are capitals of their nation state. Listed are the geographical location of the cities and their population sizes. The material is primarily derived from a 1988 report of the Economic Commission for Africa (ECA) and several issues of the United Nations Demographic Yearbook (1973-81). Severe problems were found with several countries such as Togo, Ghana and South Africa. For South Africa, the data were derived from the United Nations Demographic Yearbook 1987.
WCPD is an Arc/Info point coverage. It has no projection, as the cities are located on the basis of their latitude and longitude. Coordinates were assigned on the basis of gazetteers or African maps. Each record in the data base contains details of the city name, country name, latitude and longitude of the city, and its population at a defined time. The Arc/Info attribute table contains the following fields:
AREA Arc/Info item PERIMETER Arc/Info item ACPD# Arc/Info item ACPD-ID Arc/Info item ID-NUM Unique number for each city CITY City name COUNTRY Country name CITY-POP Population of city proper YEAR Latest available year of collection
ACPD comes as an Arc/Info EXPORT file originally called "ACPD.E00" and contains 67 Kb of data. The file has a record length of 80 and a block size of 8000 (blocking factor = 100). The file can be read from tape using Arc/Info's TAPEREAD command or any other generic copy utility. If distributed on a diskette it can be read using the ordinary DOS 'COPY' command. The file has to be converted to Arc/Info internal format using its IMPORT command.
References to the WCPD data set can be found in:
The source of the WCPD data set as held by GRID is Birkbeck College, University of London, Department of Geography, London, UK.
license: apache-2.0 tags: - africa - sustainable-development-goals - world-health-organization - development
Average share of the built-up area of cities that is open space for public use for all (%)
Dataset Description
This dataset provides country-level data for the indicator "11.7.1 Average share of the built-up area of cities that is open space for public use for all (%)" across African nations, sourced from the World Health Organization's (WHO) data… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/average-share-of-the-built-up-area-of-cities-that-is-open-sp-for-african-countries.
The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.
The places we live affect our health status and the choices and opportunities we have (or do not have) to lead fulfilling lives. Over the past ten years, the African Population & Health Research Centre (APHRC) has led pioneering work in highlighting some of the major health and livelihood challenges associated with rapid urbanization in sub-Saharan Africa (SSA). In 2002, the Centre established the first longitudinal platform in urban Africa in the city of Nairobi in Kenya. The platform known as the Nairobi Urban Health and Demographic Surveillance System collects data on two informal settlements - Korogocho and Viwandani - in Nairobi City every four months on issues ranging from household dynamics to fertility and mortality, migration and livelihood as well as on causes of death, using a verbal autopsy technique. The dataset provided here contains key demographic and health indicators extracted from the longitudinal database. Researchers interested in accessing the micro-data can look at our data access policy and contact us.
The Demographic Surveillance Area (combining Viwandani and Korogocho slum settlements) covers a land area of about 0.97 km2, with the two informal settlements located about 7 km from each other. Korogocho is located 12 km from the Nairobi city center; in Kasarani division (now Kasarani district), while Viwandani is about 7 km from Nairobi city center in Makadara division (now Madaraka district). The DSA covers about seven villages each in Korogocho and Viwandani.
Individual
Between 1st January and 31st December,2015 the Nairobi HDSS covered 86,304 individualis living in 30,219 households distributed across two informal settlements(Korogocho and Viwandani) were observed. All persons who sleep in the household prior to the day of the survey are included in the survey, while non-resident household members are excluded from the survey.
The present universe started out through an initial census carried out on 1st August,2002 of the population living in the two Informal settlements (Korogocho and Viwandani). Regular visits have since then been made (3 times a year) to update information on births, deaths and migration that have occurred in the households observed at the initial census. New members join the population through a birth to a registered member, or an in-migration, while existing members leave through a death or out-migration. The DSS adopts the concept of an open cohort that allows new members to join and regular members to leave and return to the system.
Event history data
Three rounds in a year
This dataset is related to the whole demographic surveillance area population. The number of respondents has varied over the last 13 years (2002-2015), with variations being observed at both household level and at Individual level. As at 31st December 2015, 66,848 were being observed under the Nairobi HDSS living in 25,812 households distributed across two informal settlements(Korogocho and Viwandani). The variable IndividualId uniquely identifies every respondent observed while the variable LocationId uniquely identifies the room in which the individual was living at any point in time. To identify individuals who were living together at any one point in time (a household) the data can be split on location and observation dates.
None
Proxy Respondent [proxy]
Questionnaires are printed and administered in Swahili, the country's national language.
The questionnaires for the Nairobi HDSS were structured questionnaires based on the INDEPTH Model Questionnaire and were translated into Swahili with some modifications and additions.After an initial review the questionnaires were translated back into English by an independent translator with no prior knowledge of the survey. The back translation from the Swahili version was independently reviewed and compared to the English original. Differences in translation were reviewed and resolved in collaboration with the original translators. The English and Swahili questionnaires were both piloted as part of the survey pretest.
At baseline, a household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. In later rounds questionnaires to track the migration of the population observed at baseline, and additonal questionnaires to capture demographic and health events happening to the population have been introduced.
Data editing took place at a number of stages throughout the processing, including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of STATA data files
Where changes were made by the program, a cold deck imputation is preferred; where incorrect values were imputed using existing data from another dataset. If cold deck imputation was found to be insufficient, hot deck imputation was used, In this case, a missing value was imputed from a randomly selected similar record in the same dataset.
Some corrections are made automatically by the program(80%) and the rest by visual control of the questionnaires (20%).
Over the years the response rate at household level has varied between 95% and 97% with response rate at Individual Level varying between 92% and 95%. Challenges to acheiving a 100% response rate have included: - high population mobility within the study area - high population attrition - respondent fatigue - security in some areas
Not applicable for surveillance data
CentreId MetricTable QMetric Illegal Legal Total Metric RunDate
KE031 MicroDataCleaned Starts 219285 2017-05-16 18:25
KE031 MicroDataCleaned Transitions 825036 825036 0 2017-05-16 18:25
KE031 MicroDataCleaned Ends 219285 2017-05-16 18:25
KE031 MicroDataCleaned SexValues 825036 2017-05-16 18:25
KE031 MicroDataCleaned DoBValues 42 824994 825036 0 2017-05-16 18:25
The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.
Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.
Two provinces: Gauteng and Limpopo
Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.
The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.
Sample survey data [ssd]
Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.
In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).
A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.
In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).
How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.
Based on all the above principles the set of weights or scores was developed.
In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.
From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.
Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.
The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.
The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity IS NOT NULL OR man_made IS NOT NULL OR shop IS NOT NULL OR tourism IS NOT NULL
Features may have these attributes:
This dataset is one of many "/dataset?tags=openstreetmap">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Large go-around, also referred to as missed approach, data set. The data set is in support of the paper presented at the OpenSky Symposium on November the 10th.
If you use this data for a scientific publication, please consider citing our paper.
The data set contains landings from 176 (mostly) large airports from 44 different countries. The landings are labelled as performing a go-around (GA) or not. In total, the data set contains almost 9 million landings with more than 33000 GAs. The data was collected from OpenSky Network's historical data base for the year 2019. The published data set contains multiple files:
go_arounds_minimal.csv.gz
Compressed CSV containing the minimal data set. It contains a row for each landing and a minimal amount of information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
The last two columns, n_approaches and n_rwy_approached, are useful to filter out training and calibration flight. These have usually a large number of n_approaches, so an easy way to exclude them is to filter by n_approaches > 2.
go_arounds_augmented.csv.gz
Compressed CSV containing the augmented data set. It contains a row for each landing and additional information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
registration
string
Aircraft registration
typecode
string
Aircraft ICAO typecode
icaoaircrafttype
string
ICAO aircraft type
wtc
string
ICAO wake turbulence category
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometre
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
operator_country
string
ISO Alpha-3 country code of the operator
operator_region
string
Geographical region of the operator of the aircraft (either Europe, North America, South America, Asia, Africa, or Oceania)
wind_speed_knts
integer
METAR, surface wind speed in knots
wind_dir_deg
integer
METAR, surface wind direction in degrees
wind_gust_knts
integer
METAR, surface wind gust speed in knots
visibility_m
float
METAR, visibility in m
temperature_deg
integer
METAR, temperature in degrees Celsius
press_sea_level_p
float
METAR, sea level pressure in hPa
press_p
float
METAR, QNH in hPA
weather_intensity
list
METAR, list of present weather codes: qualifier - intensity
weather_precipitation
list
METAR, list of present weather codes: weather phenomena - precipitation
weather_desc
list
METAR, list of present weather codes: qualifier - descriptor
weather_obscuration
list
METAR, list of present weather codes: weather phenomena - obscuration
weather_other
list
METAR, list of present weather codes: weather phenomena - other
This data set is augmented with data from various public data sources. Aircraft related data is mostly from the OpenSky Network's aircraft data base, the METAR information is from the Iowa State University, and the rest is mostly scraped from different web sites. If you need help with the METAR information, you can consult the WMO's Aerodrom Reports and Forecasts handbook.
go_arounds_agg.csv.gz
Compressed CSV containing the aggregated data set. It contains a row for each airport-runway, i.e. every runway at every airport for which data is available. The data is structured in the following way:
Column name
Type
Description
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
n_landings
integer
Total number of landings observed on this runway in 2019
ga_rate
float
Go-around rate, per 1000 landings
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometres
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
This aggregated data set is used in the paper for the generalized linear regression model.
Downloading the trajectories
Users of this data set with access to OpenSky Network's Impala shell can download the historical trajectories from the historical data base with a few lines of Python code. For example, you want to get all the go-arounds of the 4th of January 2019 at London City Airport (EGLC). You can use the Traffic library for easy access to the database:
import datetime from tqdm.auto import tqdm import pandas as pd from traffic.data import opensky from traffic.core import Traffic
df = pd.read_csv("go_arounds_minimal.csv.gz", low_memory=False) df["time"] = pd.to_datetime(df["time"])
airport = "EGLC" start = datetime.datetime(year=2019, month=1, day=4).replace( tzinfo=datetime.timezone.utc ) stop = datetime.datetime(year=2019, month=1, day=5).replace( tzinfo=datetime.timezone.utc )
df_selection = df.query("airport==@airport & has_ga & (@start <= time <= @stop)")
flights = [] delta_time = pd.Timedelta(minutes=10) for _, row in tqdm(df_selection.iterrows(), total=df_selection.shape[0]): # take at most 10 minutes before and 10 minutes after the landing or go-around start_time = row["time"] - delta_time stop_time = row["time"] + delta_time
# fetch the data from OpenSky Network
flights.append(
opensky.history(
start=start_time.strftime("%Y-%m-%d %H:%M:%S"),
stop=stop_time.strftime("%Y-%m-%d %H:%M:%S"),
callsign=row["callsign"],
return_flight=True,
)
)
Traffic.from_flights(flights)
Additional files
Additional files are available to check the quality of the classification into GA/not GA and the selection of the landing runway. These are:
validation_table.xlsx: This Excel sheet was manually completed during the review of the samples for each runway in the data set. It provides an estimate of the false positive and false negative rate of the go-around classification. It also provides an estimate of the runway misclassification rate when the airport has two or more parallel runways. The columns with the headers highlighted in red were filled in manually, the rest is generated automatically.
validation_sample.zip: For each runway, 8 batches of 500 randomly selected trajectories (or as many as available, if fewer than 4000) classified as not having a GA and up to 8 batches of 10 random landings, classified as GA, are plotted. This allows the interested user to visually inspect a random sample of the landings and go-arounds easily.
The percentage of persons, out of the total number of persons living in an area, self-identifying as racially Black or African American (and ethnically non-Hispanic). “Black or African American” refers to a person having origins in any of the Black racial groups of Africa. This indicator includes people who identified their race as “Black”. Source: U.S. Census Bureau, American Community Survey Years Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2020, 2017-2021, 2018-2022, 2019-2023
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gauteng City-Region Observatory (GCRO) (based at the University of Johannesburg (UJ)) in partnership with the Gauteng Provincial Government contracted Development Research Africa (DRA) to conduct an integrated Quality of Life/Customer Satisfaction Survey in the Gauteng City-Region (GCR). The objective of the GCRO is to assist and inform the Gauteng Government to build Gauteng as an integrated and globally competitive region, where the economic activities of different parts of the province complement each other in consolidating Gauteng as an economic hub of Africa and an internationally recognised global cityregion. The this end, the main aim of the survey, conducted from July to October 2009, was to inform the GCRO and the Provincial Government as well as other role-players about the perceived state of the municipalities within the GCR footprint especially with regard to the quality of life of their inhabitants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a data-set which specifies the location of Bus stop signposts and Traffic Lights in the Benin City metropolis as at 30th May 2014.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Installed and Effective Capacities (MW) per Power Facilities 2014. Data complied from the Kenya Power annual report 2014 (Data submitted on 30.06.2014); the Kenyan Energy Regulatory Commission and Wikipedia for some geolocalizations. Citation: Negawatt challenge. A curated list of datasets for the World Bank Negawatt Challenge competition in Accra and Nairobi cities. https://datahub.io/dataset/kenya-geolocalized-power-facilities-2014
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name