This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.
Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.
Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains geographic information concerning cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.
This is the complete dataset for the 500 Cities project 2019 release. This dataset includes 2017, 2016 model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data (2017, 2016), Census Bureau 2010 census population data, and American Community Survey (ACS) 2013-2017, 2012-2016 estimates. Because some questions are only asked every other year in the BRFSS, there are 7 measures (all teeth lost, dental visits, mammograms, pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) from the 2016 BRFSS that are the same in the 2019 release as the previous 2018 release. More information about the methodology can be found at www.cdc.gov/500cities.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).
This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a very small but useful dataset if you are ever looking to get jobs for a certain US city in LinkedIn. It contains a list of US cities and states and it's corresponding LinkedIn ID (which is usually externally hidden).
The cities list was retreived from here: https://github.com/kelvins/US-Cities-Database and the names of the ciiadjusted to match the name used in LinkedIn (which could differ in subtle ways).
Some cities do not have an ID, this is because the city is either too small or because there was a difference in the name on LinkedIn which I did not detect (human error). If you ever run in to one of these feel free to enhance this dataset.
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 1 cities in the Roanoke city, VA by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a cobbled together dataset of official U.S. city names and place names recognized by the U.S. Census Bureau. I originally used this in a spell checker for user input.
The names were collected in multiple stages using the US Census API and later combined into one dataset. There are about more than 48,000 city and place names in this dataset.
During the collection process, I learned that finding city names is not as straight forward as I thought. For example, some cities are "incorporated" and other areas that we think are cities, are actually considered "populated places".
The Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. A consolidated city is a unit of local government for which the functions of an incorporated place and its county or minor civil division (MCD) have merged. This action results in both the primary incorporated place and the county or MCD continuing to exist as legal entities, even though the county or MCD performs few or no governmental functions and has few or no elected officials. Where this occurs, and where one or more other incorporated places in the county or MCD continue to function as separate governments, even though they have been included in the consolidated government, the primary incorporated place is referred to as a consolidated city. The Census Bureau classifies the separately incorporated places within the consolidated city as place entities and creates a separate place (balance) record for the portion of the consolidated city not within any other place. The generalized boundaries of the consolidated cities in this file are based on those as of January 1, 2020, as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 1 cities in the Falls Church city, VA by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 7 cities in the Bibb County, AL by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 16 cities in the Cape May County, NJ by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.