CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado cities by population for 2024.
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
This dataset is comprised of the final assessment rolls submitted to the New York State Department of Taxation and Finance – Office of Real Property Tax Services by 996 local governments. Together, the assessment rolls provide the details of the more than 4.7 million parcels in New York State.
The dataset includes assessment rolls for all cities and towns, except New York City. (For New York City assessment roll data, see NYC Open Data [https://opendata.cityofnewyork.us])
For each property, the dataset includes assessed value, full market value, property size, owners, exemption information, and other fields.
Tip: For a unique identifier for every property in New York State, combine the SWIS code and print key fields.
This data is a portion of a larger dataset, composed by over 120 million data points, collected by Starsift LLC for the Grocerybear Project (www.grocerybear.com) every day between January 2017 and May 2018 for over 50,000 unique items in about 750 commercial categories for eleven US cities: Boise, Honolulu, Houston, Las Vegas, Los Angeles, Orlando, Phoenix, Portland, San Francisco, Seattle, and Washington DC. This dataset is composed by 5 csv files, one for each CPI-U Entry Level Item disclosed: Apples, Bread, Butter, Cigarettes, and Coffee. Each file presents the following columns: Year, Month, Product name, Product code, City, Store Chain, Average price in the month. Store chains have been anonymized. This project also includes an R file to calculate sub-national consumer price indexes using the Time-interaction-Region Product Dummy (TiRPD) model.
This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]
Many residents of New York City speak more than one language; a number of them speak and understand non-English languages more fluently than English. This dataset, derived from the Census Bureau's American Community Survey (ACS), includes information on over 1.7 million limited English proficient (LEP) residents and a subset of that population called limited English proficient citizens of voting age (CVALEP) at the Community District level. There are 59 community districts throughout NYC, with each district being represented by a Community Board.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most States are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, and municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four States (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their States. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The 2010 Census boundaries for counties and equivalent entities are as of January 1, 2010, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS). This table contains data on household income and poverty status from the American Community Survey 2006-2010 database for counties. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables). The name for table 'ACS10INCCNTYMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most States are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, and municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four States (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their States. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The 2010 Census boundaries for counties and equivalent entities are as of January 1, 2010, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
This table contains data on race, age, sex, and marital status from the American Community Survey 2006-2010 database for counties. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).
The name for table 'ACS10POPCNTYMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most States are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, and municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four States (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their States. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The 2010 Census boundaries for counties and equivalent entities are as of January 1, 2010, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
This table contains housing data, including building age, value and/or rent, length of occupation, number of units, home heating type, and number of vehicles from the American Community Survey 2006-2010 database for counties. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems.