100+ datasets found
  1. w

    Cities and Towns of the United States

    • data.wu.ac.at
    Updated Jul 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey, Department of the Interior (2017). Cities and Towns of the United States [Dataset]. https://data.wu.ac.at/schema/public_opendatasoft_com/Y2l0aWVzLWFuZC10b3ducy1vZi10aGUtdW5pdGVkLXN0YXRlcw==
    Explore at:
    kml, json, csv, application/vnd.geo+json, xlsAvailable download formats
    Dataset updated
    Jul 13, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains geographic information concerning cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.

  2. d

    National Incorporated Places and Counties

    • catalog.data.gov
    Updated Sep 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2023). National Incorporated Places and Counties [Dataset]. https://catalog.data.gov/dataset/national-incorporated-places-and-counties
    Explore at:
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    data.iowa.gov
    Description

    This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.

  3. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  4. f

    A unified and validated traffic dataset for 20 U.S. cities

    • figshare.com
    zip
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma (2024). A unified and validated traffic dataset for 20 U.S. cities [Dataset]. http://doi.org/10.6084/m9.figshare.24235696.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 31, 2024
    Dataset provided by
    figshare
    Authors
    Xiaotong Xu; Zhenjie Zheng; Zijian Hu; Kairui Feng; Wei Ma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).

  5. N

    Florida City, FL Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Florida City, FL Age Group Population Dataset: A Complete Breakdown of Florida City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4522fba4-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida City, Florida
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Florida City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Florida City. The dataset can be utilized to understand the population distribution of Florida City by age. For example, using this dataset, we can identify the largest age group in Florida City.

    Key observations

    The largest age group in Florida City, FL was for the group of age 15 to 19 years years with a population of 1,187 (9.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Florida City, FL was the 80 to 84 years years with a population of 79 (0.62%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Florida City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Florida City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Florida City Population by Age. You can refer the same here

  6. 500 Cities: Local Data for Better Health, 2019 release

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: Local Data for Better Health, 2019 release [Dataset]. https://catalog.data.gov/dataset/500-cities-local-data-for-better-health-2019-release
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This is the complete dataset for the 500 Cities project 2019 release. This dataset includes 2017, 2016 model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data (2017, 2016), Census Bureau 2010 census population data, and American Community Survey (ACS) 2013-2017, 2012-2016 estimates. Because some questions are only asked every other year in the BRFSS, there are 7 measures (all teeth lost, dental visits, mammograms, pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) from the 2016 BRFSS that are the same in the 2019 release as the previous 2018 release. More information about the methodology can be found at www.cdc.gov/500cities.

  7. o

    Places - United States of America

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Places - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-place/
    Explore at:
    geojson, csv, json, excelAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.

  8. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  9. c

    California Overlapping Cities and Counties and Identifiers

    • gis.data.ca.gov
    • data.ca.gov
    • +1more
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). California Overlapping Cities and Counties and Identifiers [Dataset]. https://gis.data.ca.gov/datasets/california-overlapping-cities-and-counties-and-identifiers/about
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    California Department of Technology
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal Buffers (this dataset)Place AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.

  10. N

    cities in Cape May County Ranked by Native American Population // 2025...

    • neilsberg.com
    csv, json
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). cities in Cape May County Ranked by Native American Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/cities-in-cape-may-county-nj-by-native-american-population/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Jersey, Cape May County
    Variables measured
    Native American Population, Native American Population as Percent of Total Population of cities in Cape May County, NJ, Native American Population as Percent of Total Native American Population of Cape May County, NJ
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 16 cities in the Cape May County, NJ by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Native American Population: This column displays the rank of cities in the Cape May County, NJ by their American Indian and Alaska Native (AIAN) population, using the most recent ACS data available.
    • cities: The cities for which the rank is shown in the previous column.
    • Native American Population: The Native American population of the cities is shown in this column.
    • % of Total cities Population: This shows what percentage of the total cities population identifies as Native American. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total Cape May County Native American Population: This tells us how much of the entire Cape May County, NJ Native American population lives in that cities. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  11. TABLE III. Deaths in 122 U.S. cities

    • data.cdc.gov
    • healthdata.gov
    • +7more
    application/rdfxml +5
    Updated Oct 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Immunization and Respiratory Diseases (NCIRD) (2016). TABLE III. Deaths in 122 U.S. cities [Dataset]. https://data.cdc.gov/dataset/TABLE-III-Deaths-in-122-U-S-cities/rpjd-ejph
    Explore at:
    tsv, json, application/rssxml, csv, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Oct 6, 2016
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    National Center for Immunization and Respiratory Diseases (NCIRD)
    Area covered
    United States
    Description

    TABLE III. Deaths in 122 U.S. cities – 2016. 122 Cities Mortality Reporting System — Each week, the vital statistics offices of 122 cities across the United States report the total number of death certificates processed and the number of those for which pneumonia or influenza was listed as the underlying or contributing cause of death by age group (Under 28 days, 28 days –1 year, 1-14 years, 15-24 years, 25-44 years, 45-64 years, 65-74 years, 75-84 years, and ≥ 85 years).

    FOOTNOTE: U: Unavailable. —: No reported cases. * Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.

    † Pneumonia and influenza.

    § Total includes unknown ages.

  12. NYC Open Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/nycopendata/new-york
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    NYC Open Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

    Content

    Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

    • Over 8 million 311 service requests from 2012-2016

    • More than 1 million motor vehicle collisions 2012-present

    • Citi Bike stations and 30 million Citi Bike trips 2013-present

    • Over 1 billion Yellow and Green Taxi rides from 2009-present

    • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

    This dataset is deprecated and not being updated.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://opendata.cityofnewyork.us/

    https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

    The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

    Banner Photo by @bicadmedia from Unplash.

    Inspiration

    On which New York City streets are you most likely to find a loud party?

    Can you find the Virginia Pines in New York City?

    Where was the only collision caused by an animal that injured a cyclist?

    What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

    https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

  13. Business Data United States of America / Company B2B Data United States of...

    • datarade.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2022). Business Data United States of America / Company B2B Data United States of America ( Full Coverage) [Dataset]. https://datarade.ai/data-products/56-million-companies-in-united-states-of-america-full-cover-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    United States
    Description

    With 56 Million Businesses in the United States of America, Techsalerator has access to the highest B2B count of Data/ Business Data in the country.

    Thanks to our unique tools and large data specialist team, we are able to select the ideal targeted dataset based on the unique elements such as sales volume of a company, the company's location, no. of employees etc...

    Whether you are looking for an entire fill install, access to our API's or if you are just looking for a one-time targeted purchase, get in touch with our company and we will fulfill your international data need.

    We cover all states and cities in the country : Example covered.

    All states :

    Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho IllinoisIndiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri MontanaNebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon PennsylvaniaRhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming

    A few cities : New York City NY Los Angeles CA Chicago IL Houston TX Phoenix AZ Philadelphia PA San Antonio TX San Diego CA Dallas TX Austin TX San Jose CA Fort Worth TX Jacksonville FL Columbus OH Charlotte NC Indianapolis IN San Francisco CA Seattle WA Denver CO Washington DC Boston MA El Paso TX Nashville TN Oklahoma City OK Las Vegas NV Detroit MI Portland OR Memphis TN Louisville KY Milwaukee WI Baltimore MD Albuquerque NM Tucson AZ Mesa AZ Fresno CA Sacramento CA Atlanta GA Kansas City MO Colorado Springs CO Raleigh NC Omaha NE Miami FL Long Beach CA Virginia Beach VA Oakland CA Minneapolis MN Tampa FL Tulsa OK Arlington TX Wichita KS Bakersfield CA Aurora CO New Orleans LA Cleveland OH Anaheim CA Henderson NV Honolulu HI Riverside CA Santa Ana CA Corpus Christi TX Lexington KY San Juan PR Stockton CA St. Paul MN Cincinnati OH Greensboro NC Pittsburgh PA Irvine CA St. Louis MO Lincoln NE Orlando FL Durham NC Plano TX Anchorage AK Newark NJ Chula Vista CA Fort Wayne IN Chandler AZ Toledo OH St. Petersburg FL Reno NV Laredo TX Scottsdale AZ North Las Vegas NV Lubbock TX Madison WI Gilbert AZ Jersey City NJ Glendale AZ Buffalo NY Winston-Salem NC Chesapeake VA Fremont CA Norfolk VA Irving TX Garland TX Paradise NV Arlington VA Richmond VA Hialeah FL Boise ID Spokane WA Frisco TX Moreno Valley CA Tacoma WA Fontana CA Modesto CA Baton Rouge LA Port St. Lucie FL San Bernardino CA McKinney TX Fayetteville NC Santa Clarita CA Des Moines IA Oxnard CA Birmingham AL Spring Valley NV Huntsville AL Rochester NY Cape Coral FL Tempe AZ Grand Rapids MI Yonkers NY Overland Park KS Salt Lake City UT Amarillo TX Augusta GA Columbus GA Tallahassee FL Montgomery AL Huntington Beach CA Akron OH Little Rock AR Glendale CA Grand Prairie TX Aurora IL Sunrise Manor NV Ontario CA Sioux Falls SD Knoxville TN Vancouver WA Mobile AL Worcester MA Chattanooga TN Brownsville TX Peoria AZ Fort Lauderdale FL Shreveport LA Newport News VA Providence RI Elk Grove CA Rancho Cucamonga CA Salem OR Pembroke Pines FL Santa Rosa CA Eugene OR Oceanside CA Cary NC Fort Collins CO Corona CA Enterprise NV Garden Grove CA Springfield MO Clarksville TN Bayamon PR Lakewood CO Alexandria VA Hayward CA Murfreesboro TN Killeen TX Hollywood FL Lancaster CA Salinas CA Jackson MS Midland TX Macon County GA Kansas City KS Palmdale CA Sunnyvale CA Springfield MA Escondido CA Pomona CA Bellevue WA Surprise AZ Naperville IL Pasadena TX Denton TX Roseville CA Joliet IL Thornton CO McAllen TX Paterson NJ Rockford IL Carrollton TX Bridgeport CT Miramar FL Round Rock TX Metairie LA Olathe KS Waco TX

  14. N

    Ohio City, OH Age Group Population Dataset: A Complete Breakdown of Ohio...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Ohio City, OH Age Group Population Dataset: A Complete Breakdown of Ohio City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/ohio-city-oh-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ohio, Ohio City
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Ohio City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Ohio City. The dataset can be utilized to understand the population distribution of Ohio City by age. For example, using this dataset, we can identify the largest age group in Ohio City.

    Key observations

    The largest age group in Ohio City, OH was for the group of age 15 to 19 years years with a population of 141 (17.20%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Ohio City, OH was the 85 years and over years with a population of 2 (0.24%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Ohio City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Ohio City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ohio City Population by Age. You can refer the same here

  15. Miss America Titleholders

    • kaggle.com
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Miss America Titleholders [Dataset]. https://www.kaggle.com/datasets/thedevastator/miss-america-titleholders-a-comprehensive-datase
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Miss America Titleholders

    Miss America over the years

    About this dataset

    Every year, young women from across the United States compete for the title of Miss America. The competition is open to women between the ages of 17 and 25, and includes a talent portion, an interview, and a swimsuit competition (which was removed in 2018). The winner is crowned by the previous year's titleholder and goes on to tour the nation for about 20,000 miles a month, promoting her particular platform of interest.

    The Miss America dataset contains information on all Miss America titleholders from 1921 to 2022. It includes columns for the year of the pageant, the name of the crowned winner, her state or district represented, awards won, talent performed, and notes about her win

    How to use the dataset

    This dataset contains information on Miss America titleholders from 1921 to 2022. The data includes the name of the winner, her state or district, the city she represented, her talent, and the year she won

    Research Ideas

    • Miss America could be used to study changes in American culture over time. For example, the decline in the swimsuit competition could be seen as a sign of increasing body positivity in the US.
    • The dataset could be used to study the effect of winning Miss America has on a woman's career. Does winning lead to more opportunities?
    • The dataset could be used to study geographical patterns inMiss America winners. For example, are there any states that have produced more winners than others?

    Acknowledgements

    License

    License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.

    Columns

    File: miss_america_titleholders.csv | Column name | Description | |:----------------------|:-----------------------------------------------------------------------| | year | The year the Miss America pageant was held. (Integer) | | crowned | The name of the Miss America titleholder. (String) | | winner | The name of the Miss America winner. (String) | | state_or_district | The state or district represented by the Miss America winner. (String) | | city | The city represented by the Miss America winner. (String) | | awards | The awards won by the Miss America winner. (String) | | talent | The talent performed by the Miss America winner. (String) | | notes | Notes about the Miss America winner. (String) |

    File: eurovision_winners.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------------| | Year | The year the pageant was held. (Integer) | | Date | The date the pageant was held. (Date) | | Host City | The city where the pageant was held. (String) | | Winner | The name of the pageant winner. (String) | | Song | The song performed by the pageant winner. (String) | | Performer | The name of the performer of the pageant winner's song. (String) | | Points | The number of points the pageant winner received. (Integer) | | Margin | The margin of points between the pageant winner and runner-up. (Integer) | | Runner-up | The name of the pageant runner-up. (String) |

  16. o

    Counties - United States of America

    • public.opendatasoft.com
    • bfortune.opendatasoft.com
    csv, excel, geojson +1
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Counties - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-county/
    Explore at:
    excel, json, geojson, csvAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for counties and equivalent entities in United States of America. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.

  17. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  18. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    fgdb, gpkg, html, shp, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  19. d

    Data from: City and County Commercial Building Inventories

    • catalog.data.gov
    • data.openei.org
    • +1more
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2024). City and County Commercial Building Inventories [Dataset]. https://catalog.data.gov/dataset/city-and-county-commercial-building-inventories-010d2
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    National Renewable Energy Laboratory
    Description

    The Commercial Building Inventories provide modeled data on commercial building type, vintage, and area for each U.S. city and county. Please note this data is modeled and more precise data may be available through county assessors or other sources. Commercial building stock data is estimated using CoStar Realty Information, Inc. building stock data. This data is part of a suite of state and local energy profile data available at the "State and Local Energy Profile Data Suite" link below and builds on Cities-LEAP energy modeling, available at the "EERE Cities-LEAP Page" link below. Examples of how to use the data to inform energy planning can be found at the "Example Uses" link below.

  20. Counties

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Aug 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2024). Counties [Dataset]. https://catalog.data.gov/dataset/counties2
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey, Department of the Interior (2017). Cities and Towns of the United States [Dataset]. https://data.wu.ac.at/schema/public_opendatasoft_com/Y2l0aWVzLWFuZC10b3ducy1vZi10aGUtdW5pdGVkLXN0YXRlcw==

Cities and Towns of the United States

Explore at:
202 scholarly articles cite this dataset (View in Google Scholar)
kml, json, csv, application/vnd.geo+json, xlsAvailable download formats
Dataset updated
Jul 13, 2017
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Area covered
United States
Description

This dataset contains geographic information concerning cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.

Search
Clear search
Close search
Google apps
Main menu