The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of China by race. It includes the distribution of the Non-Hispanic population of China across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of China across relevant racial categories.
Key observations
Of the Non-Hispanic population in China, the largest racial group is White alone with a population of 669 (70.64% of the total Non-Hispanic population).
https://i.neilsberg.com/ch/china-tx-population-by-race-and-ethnicity.jpeg" alt="China Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for China Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of China town by race. It includes the distribution of the Non-Hispanic population of China town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of China town across relevant racial categories.
Key observations
Of the Non-Hispanic population in China town, the largest racial group is White alone with a population of 4,231 (96.75% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for China town Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in China decreased to 5.10 percent in April from 5.20 percent in March of 2025. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.600 % in 2021. This records a decrease from the previous number of 11.900 % for 2020. China Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 15.100 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 19.500 % in 2010 and a record low of 8.900 % in 1990. China Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Disposable Personal Income in China increased to 51821 CNY in 2023 from 49282.94 CNY in 2022. This dataset provides - China Disposable Income per Capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in China was worth 17794.78 billion US dollars in 2023, according to official data from the World Bank. The GDP value of China represents 16.88 percent of the world economy. This dataset provides - China GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448898https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448898
Abstract (en): The China Multi-Generational Panel Dataset - Liaoning (CMGPD-LN) is drawn from the population registers compiled by the Imperial Household Agency (neiwufu) in Shengjing, currently the northeast Chinese province of Liaoning, between 1749 and 1909. It provides 1.5 million triennial observations of more than 260,000 residents from 698 communities. The population mainly consists of immigrants from North China who settled in rural Liaoning during the early eighteenth century, and their descendants. The data provide socioeconomic, demographic, and other characteristics for individuals, households, and communities, and record demographic outcomes such as marriage, fertility, and mortality. The data also record specific disabilities for a subset of adult males. Additionally, the collection includes monthly and annual grain price data, custom records for the city of Yingkou, as well as information regarding natural disasters, such as floods, droughts, and earthquakes. This dataset is unique among publicly available population databases because of its time span, volume, detail, and completeness of recording, and because it provides longitudinal data not just on individuals, but on their households, descent groups, and communities. Possible applications of the dataset include the study of relationships between demographic behavior, family organization, and socioeconomic status across the life course and across generations, the influence of region and community on demographic outcomes, and development and assessment of quantitative methods for the analysis of complex longitudinal datasets. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Standardized missing values.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Smallest Geographic Unit: Chinese banners (8) The data are from 725 surviving triennial registers from 29 distinct populations. Each of the 29 register series corresponded to a specific rural population concentrated in a small number of neighboring villages. These populations were affiliated with the Eight Banner civil and military administration that the Qing state used to govern northeast China as well as some other parts of the country. 16 of the 29 populations are regular bannermen. In these populations adult males had generous allocations of land from the state, and in return paid an annual fixed tax to the Imperial Household Agency, and provided to the Imperial Household Agency such home products as homespun fabric and preserved meat, and/or such forest products as mushrooms. In addition, as regular bannermen they were liable for military service as artisans and soldiers which, while in theory an obligation, was actually an important source of personal revenue and therefore a political privilege. 8 of the 29 populations are special duty banner populations. As in the regular banner population, the adult males in the special duty banner populations also enjoyed state allocated land free of rent. These adult males were also assigned to provide special services, including collecting honey, raising bees, fishing, picking cotton, and tanning and dyeing. The remaining populations were a diverse mixture of estate banner and servile populations. The populations covered by the registers, like much of the population of rural Liaoning in the eighteenth and nineteenth centuries, were mostly descendants of Han Chinese settlers who came from Shandong and other nearby provinces in the late seventeenth and early eighteenth centuries in response to an effort by the Chinese state to repopulate the region. 2016-09-06 2016-09-06 The Training Guide has been updated to version 3.60. Additionally, the Principal Investigator affiliation has been corrected, and cover sheets for all PDF documents have been revised.2014-07-10 Releasing new study level documentation that contains the tables found in the appendix of the Analytic dataset codebook.2014-06-10 The data and documentation have been updated following re-evaluation.2014-01-29 Fixing variable format issues. Some variables that were supposed to be s...
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
Tibet was excluded from the sample. The excluded areas represent less than 1 percent of the total population of China.
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for China is 3500.
Mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consumer Confidence in China decreased to 87.50 points in March from 88.40 points in February of 2025. This dataset provides - China Consumer Confidence - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Weekly Hours in China decreased to 48.30 Hours in April from 48.50 Hours in March of 2025. This dataset includes a chart with historical data for China Average Weekly Hours.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in China was last recorded at 12175.20 US dollars in 2023. The GDP per Capita in China is equivalent to 96 percent of the world's average. This dataset provides - China GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Youth Unemployment Rate in China decreased to 16.50 percent in March from 16.90 percent in February of 2025. This dataset includes a chart with historical data for China Youth Unemployment Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold Reserves in China increased to 2292.31 Tonnes in the first quarter of 2025 from 2279.56 Tonnes in the fourth quarter of 2024. This dataset provides - China Gold Reserves - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China % of Population with Access to Water: City data was reported at 99.433 % in 2023. This records an increase from the previous number of 99.387 % for 2022. China % of Population with Access to Water: City data is updated yearly, averaging 96.120 % from Dec 1985 (Median) to 2023, with 31 observations. The data reached an all-time high of 99.433 % in 2023 and a record low of 63.900 % in 2000. China % of Population with Access to Water: City data remains active status in CEIC and is reported by Ministry of Housing and Urban-Rural Development. The data is categorized under China Premium Database’s Utility Sector – Table CN.RCA: Percentage of Population with Access to Water.
The PREDICT Consortium strengthened global preparedness for emerging threats, in particular to detect viruses that may have the potential to spillover from animal hosts to people. PREDICT-2, implemented from October 2014 through September 2020 as part of USAID’s Emerging Pandemic Threats program, was led by the UC Davis One Health Institute as a multi-institutional cross-disciplinary consortium with numerous global , implementing and government partners in 30 countries (see https://ohi.vetmed.ucdavis.edu/programs-projects/predict-project/authorship for a list of contributors). This project pioneered a One Health approach to emerging infectious virus surveillance and risk communication at high risk human-wildlife interfaces. This data asset and related datasets contain the data collected for China only.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in China was last recorded at 22137.60 US dollars in 2023, when adjusted by purchasing power parity (PPP). The GDP per Capita, in China, when adjusted by Purchasing Power Parity is equivalent to 125 percent of the world's average. This dataset provides - China GDP per capita PPP - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in China. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of China population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 72.09% of the total residents in China. Notably, the median household income for White households is $56,250. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $56,250.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for China median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies. The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.