This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains geographic information concerning cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.
Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.
Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
This layer presents the locations of major cities within the United States with populations of approximately 10,000 or greater, state capitals, and the national capital. Major Cities are locations containing population totals from the 2020 Census.The points represent U.S. Census Places polygons sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State). Attribute fields include 2020 total population from the U.S. Census Public Law 94 data that symbolize the city points using these six classifications: Class Population Range 5 2,500 – 9,999 6 10,000 – 49,999 7 50,000 – 99,999 8 100,000 – 249,999 9 250,000 – 499,999 10 500,000 and overThis ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.
https://www.icpsr.umich.edu/web/ICPSR/studies/9251/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9251/terms
This collection presents in computer-readable form the data items used to produce the corresponding printed volume of the COUNTY AND CITY DATA BOOK, 1988. Included is a broad range of statistical information, made available by federal agencies and national associations, for counties, cities, and places. Information also is provided for the 50 states, the District of Columbia, and for the United States as a whole. The dataset is comprised of seven files: a county file, a city file, and a place file, with footnote files and data dictionaries for both the county and the city files. The county data file contains information on areas such as age, agriculture, banking, construction, crime, education, federal expenditures, personal income, population, and vital statistics. The city data file includes variables such as city government, climate, crime, housing, labor force and employment, manufactures, retail trade, and service industries. Included in the place data file are items on population and money income.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national filewith no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independentdata set, or they can be combined to cover the entire nation. Combined New England City and Town Areas (CNECTA) are defined by the Office of Management and Budget (OMB) and consist of two or more adjacent New England City and Town Areas (NECTA) that have significant employment interchanges. The NECTAs that combine to create a CNECTA retain separate identities within the larger combined statistical area. Because CNECTAs represent groupings of NECTAs, they should not be ranked or compared with individual NECTAs. The CNECTA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2017.
This data collection contains information about the population of each county, town, and city of the United States in 1850 and 1860. Specific variables include tabulations of white, black, and slave males and females, and aggregate population for each town. Foreign-born population, total population of each county, and centroid latitudes and longitudes of each county and state were also compiled. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR -- https://doi.org/10.3886/ICPSR09424.v2. We highly recommend using the ICPSR version as they made this dataset available in multiple data formats.
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
https://www.icpsr.umich.edu/web/ICPSR/studies/6398/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6398/terms
This data collection provides statistics gathered from a variety of federal agencies and national associations. Demographic, economic, and governmental data from both the federal government and private agencies are presented to enable multiarea comparisons as well as single-area profiles. Current estimates and benchmark census results are included. Data are available for five types of geographic coverage: (1) Metro Areas data cover 249 metropolitan statistical areas (MSAs), 17 consolidated metropolitan statistical areas (CMSAs), 54 primary metropolitan statistical areas (PSMAs), and 16 New England county metropolitan areas (NECMAs). Metro Areas data include the following general subjects: area and population, households, vital statistics, health, education, crime, housing, money income, personal income, civilian labor force, employment, construction, commercial office space, manufacturing, wholesale and retail trade, service industries, banking, federal funds and grants, and government employment. There are 14 parts for Metro Areas. (2) State Metro/Nonmetro data cover the United States, the 50 states, the District of Columbia, and the metropolitan and nonmetropolitan portions of these areas. State Metro/Nonmetro data include most of the subjects listed for Metro Areas. There are six parts for State Metro/Nonmetro. (3) Metro Counties data cover 336 metropolitan areas and their component counties and include topics identical to those presented in the State Metro/Nonmetro data. Six parts are supplied for Metro Counties. (4) Metro Central Cities data cover 336 metropolitan areas and their 522 central cities and 336 outside central cities portions. Metro Central Cities variables are limited to 13 items, which include area and population, money income, civilian labor force, and retail trade. There is one part for Metro Central Cities. (5) States data cover the United States, the 50 states, the District of Columbia, and census regions and divisions. States data include the same items as the Metro Areas data, plus information on social welfare programs, geography and environment, domestic travel and parks, gross state product, poverty, wealth holders, business, research and development, agriculture, forestry and fisheries, minerals and mining, transportation, communications, energy, state government, federal government, and elections. There are 101 parts for States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Missouri City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Missouri City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Missouri City was 216, a 0.47% increase year-by-year from 2021. Previously, in 2021, Missouri City population was 215, a decline of 0.46% compared to a population of 216 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Missouri City decreased by 85. In this period, the peak population was 345 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Missouri City Population by Year. You can refer the same here
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). These data have been made publicly available from an authoritative source other than this Atlas and data should be obtained directly from that source for any re-use. See the original metadata from the authoritative source for more information about these data and use limitations. The authoritative source of these data can be found at the following location: US Census TIGER/Line 2022
City locations for all places in the TIGER files; this file was extracted from dbf files posted on the internet by the Bureau of the Census. This is basically a gazeteer of place names used in the 1990 census, with population and locations included. City, places, population, 1990
The Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
Tree City USA is a national program that recognizes municipal commitment to community forestry. In return for meeting program requirements, Tree City USA participants expect social, economic, and/or environmental benefits. Understanding the geographic distribution and socioeconomic characteristics of Tree City USA communities at the national scale can offer insights into the motivations or barriers to program participation, and provide context for community forestry research at finer scales. In this study, researchers assessed patterns in Tree City USA participation for all U.S. communities with more than 2,500 people according to geography, community population size, and socioeconomic characteristics, such as income, education, and race. Nationally, 23.5% of communities studied were Tree City USA participants, and this accounted for 53.9% of the total population in these communities. Tree City USA participation rates varied substantially by U.S. region, but in each region participation rates were higher in larger communities, and long-term participants tended to be larger communities than more recent enrollees. In logistic regression models, owner occupancy rates were significant negative predictors of Tree City USA participation, education and percent white population were positive predictors in many U.S. regions, and inconsistent patterns were observed for income and population age. The findings indicate that communities with smaller populations, lower education levels, and higher minority populations are underserved regionally by Tree City USA, and future efforts should identify and overcome barriers to participation in these types of communities. This dataset is associated with the following publication: Berland , A., D. Herrmann , and M. Hopton. National Assessment of Tree City USA Participation According to Geography andSocioeconomic Characteristics. Arboriculture & Urban Forestry. International Society of Arboriculture, Champaign, IL, USA, 42(2): 120-130, (2016).
This dataset contains a listing of incorporated places (cities and towns) and counties within the United States including the GNIS code, FIPS code, name, entity type and primary point (location) for the entity. The types of entities listed in this dataset are based on codes provided by the U.S. Census Bureau, and include the following: C1 - An active incorporated place that does not serve as a county subdivision equivalent; C2 - An active incorporated place legally coextensive with a county subdivision but treated as independent of any county subdivision; C3 - A consolidated city; C4 - An active incorporated place with an alternate official common name; C5 - An active incorporated place that is independent of any county subdivision and serves as a county subdivision equivalent; C6 - An active incorporated place that partially is independent of any county subdivision and serves as a county subdivision equivalent or partially coextensive with a county subdivision but treated as independent of any county subdivision; C7 - An incorporated place that is independent of any county; C8 - The balance of a consolidated city excluding the separately incorporated place(s) within that consolidated government; C9 - An inactive or nonfunctioning incorporated place; H1 - An active county or statistically equivalent entity; H4 - A legally defined inactive or nonfunctioning county or statistically equivalent entity; H5 - A census areas in Alaska, a statistical county equivalent entity; and H6 - A county or statistically equivalent entity that is areally coextensive or governmentally consolidated with an incorporated place, part of an incorporated place, or a consolidated city.