Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book subjects is Black people-South Africa-Economic conditions, featuring 9 columns including author, BNB id, book, book publisher, and book subjects. The preview is ordered by publication date (descending).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book subjects is Black people-South Africa-Social life and customs, featuring 9 columns including author, BNB id, book, book publisher, and book subjects. The preview is ordered by publication date (descending).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book subjects is Colored people (South Africa)-Biography, featuring 9 columns including author, BNB id, book, book publisher, and book subjects. The preview is ordered by publication date (descending).
The 1980 South African Population Census was a count of all persons present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980). The purpose of the population census was to collect, process and disseminate detailed statistics on population size, composition and distribution at small area level. The 1980 South African Population Census contains data collected on HOUSEHOLDS: household goods and dwelling characteristics as well as employment of domestic workers; INDIVIDUALS: population group, citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities
The 1980 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered areas in the following so-called National States of Ciskei, KwaZulu, Gazankulu, Lebowa, Qwaqwa, Kangwane, and Kwandebele. The 1980 South African census excluded the areas of the Transkei and Bophuthatswana. A census data file for Bophuthatswana was released with the final South African Census 1980 dataset.
The units of analysis of the 1980 census includes households, individuals and institutions
The 1980 South African census covered all household members (usual residents).
The 1980 South African Population Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980) were enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were not enumerated and included in the figures. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census/enumeration data [cen]
Face-to-face [f2f]
The 1980 Population Census questionnaire was administered to all household members and covered household goods and dwelling characteristics, and employment of domestic workers. Questions concerning individuals included those on citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities.
The following questions appear in the questionnaire but the corresponding data has not been included in the data set: PART C: PARTICULARS OF DWELLING: 2. How many separate families (i) Number of families (ii) Number of non-family persons (iii) total number of occupants [i.e. persons in families shown against (i) plus persons shown against 3. Persons employed by household Full-time, Part-time (a) How many persons are employed as domestics by you? (Include garden workers) (b) Total cash wages paid to above –mentioned persons for April 1980 4. Ownership – Do not answer this question if your dwelling is on a farm. (i) Own dwelling – (Including hire-purchase, sectional title property or property of wife): (a) Is the dwelling Fully paid Partly paid-off (b) If partly paid-off, state monthly repayment (include housing subsidy, but exclude insurance. (ii) Rented or occupied free dwelling : (a) Is the dwelling occupied free, rented furnished, rented unfurnished (b) If rented, state monthly rent (c) Is the dwelling owned by the employer? (d) Does it belong to the state, SA Railways, a provincial administration, a divisional council, or a municipality or other local authority? PART D: PARTICULARS OF THE FAMILY 1. Number of members in the family 2. Occupation. (Nature of work done) (a) Head of family (b) Wife 3. Annual income of head of family and wife. Annual income of: Head, Wife (if applicable)
The 1985 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset contains 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
The South African census 1985 census covered the provinces of the Cape, the Orange Free State, Transvaal, and Nata and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
Census/enumeration data [cen]
Although the census was meant to cover all residents of the so called white areas of South Africa, in 88 areas door-to-door surveys were not possible and the population in these areas was enumerated by means of a sample survey conducted by the Human Sciences Research Council.
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in South Africa decreased to 31.90 percent in the fourth quarter of 2024 from 32.10 percent in the third quarter of 2024. This dataset provides - South Africa Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Youth Unemployment Rate in South Africa decreased to 59.60 percent in the fourth quarter of 2024 from 60.20 percent in the third quarter of 2024. This dataset provides - South Africa Youth Unemployment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HLA Class II Haplotype Frequency Distributions (for 99% haplotypes per population) and HLA Class II Simulated Populations (Genotype level information for sample sizes of 1000, 5000, 10000 simulated individuals) for 4 broad and 21 detailed US population groups.
Broad population groups: African Americans (AFA), Asian and Pacific Islanders (API), Caucasians (CAU), Hispanics (HIS).
Detailed population groups: African American (AAFA), African (AFB), South Asian Indian (AINDI), American Indian - South or Central American (AISC), Alaska native of Aleut (ALANAM), North American Indian (AMIND), Caribbean Black (CARB), Caribbean Hispanic (CARHIS), Caribbean Indian (CARIBI), European Caucasian (EURCAU), Filipino (FILII), Hawaiian or other Pacific Islander (HAWI), Japanese (JAPI), Korean (KORI), Middle Eastern or North Coast of Africa (MENAFC), Mexican or Chicano (MSWHIS), Chinese (NCHI), Hispanic - South or Central American (SCAHIS), Black - South or Central American (SCAMB), Southeast Asian (SCSEAI), Vietnamese (VIET).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa is experiencing a rapidly growing diabetes epidemic that threatens its healthcare system. Research on the determinants of diabetes in South Africa receives considerable attention due to the lifestyle changes accompanying South Africa’s rapid urbanization since the fall of Apartheid. However, few studies have investigated how segments of the Black South African population, who continue to endure Apartheid’s institutional discriminatory legacy, experience this transition. This paper explores the association between individual and area-level socioeconomic status and diabetes prevalence, awareness, treatment, and control within a sample of Black South Africans aged 45 years or older in three municipalities in KwaZulu-Natal. Cross-sectional data were collected on 3,685 participants from February 2017 to February 2018. Individual-level socioeconomic status was assessed with employment status and educational attainment. Area-level deprivation was measured using the most recent South African Multidimensional Poverty Index scores. Covariates included age, sex, BMI, and hypertension diagnosis. The prevalence of diabetes was 23% (n = 830). Of those, 769 were aware of their diagnosis, 629 were receiving treatment, and 404 had their diabetes controlled. Compared to those with no formal education, Black South Africans with some high school education had increased diabetes prevalence, and those who had completed high school had lower prevalence of treatment receipt. Employment status was negatively associated with diabetes prevalence. Black South Africans living in more deprived wards had lower diabetes prevalence, and those residing in wards that became more deprived from 2001 to 2011 had a higher prevalence diabetes, as well as diabetic control. Results from this study can assist policymakers and practitioners in identifying modifiable risk factors for diabetes among Black South Africans to intervene on. Potential community-based interventions include those focused on patient empowerment and linkages to care. Such interventions should act in concert with policy changes, such as expanding the existing sugar-sweetened beverage tax.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index in South Africa (SAALL) increased 5618 points or 6.68% since the beginning of 2025, according to trading on a contract for difference (CFD) that tracks this benchmark index from South Africa. South Africa Stock Market (SAALL) - values, historical data, forecasts and news - updated on March of 2025.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book subjects is Black people-South Africa-Economic conditions, featuring 9 columns including author, BNB id, book, book publisher, and book subjects. The preview is ordered by publication date (descending).