73 datasets found
  1. NASDAQ Company Details and Listings

    • kaggle.com
    Updated Aug 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ganesh Bhabad (2024). NASDAQ Company Details and Listings [Dataset]. https://www.kaggle.com/datasets/ganeshbhabad/nasdaq-company-details-and-listings
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 11, 2024
    Dataset provided by
    Kaggle
    Authors
    Ganesh Bhabad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NASDAQ Listed Companies Dataset

    Description:

    This dataset provides comprehensive information on companies listed on the NASDAQ stock exchange. It includes essential details about each company, making it a valuable resource for financial analysis, stock market research, and investment strategies.

    Features:

    • symbol: The unique ticker symbol used to identify the company's stock on the NASDAQ exchange.
    • name: The full name of the company.
    • currency: The currency in which the company's stock is traded.
    • exchange: The stock exchange where the company is listed (in this case, NASDAQ).
    • mic_code: The Market Identifier Code (MIC) for the NASDAQ exchange.
    • country: The country where the company is headquartered.
    • type: The type of company, such as common stock or preferred stock.
    • Usage: This dataset can be used for various purposes including:

    Stock Market Analysis:

    Analyze stock symbols, company names, and market data.

    Financial Modeling:

    Incorporate company details into financial models and investment strategies.

    Market Research:

    Understand the distribution of companies by country and currency.

    Data Visualization:

    Create visualizations of the NASDAQ market landscape.

    Data Source:

    The data is sourced from the Twelve Data API, which provides up-to-date financial and stock market information.

    Notes: The dataset includes only NASDAQ-listed companies and does not cover other exchanges. Ensure to comply with any data usage policies or licensing agreements associated with the data source. Feel free to adapt the description based on the specific details and attributes of your dataset.

  2. b

    Stock Market Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Feb 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Stock Market Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-market
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Feb 5, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  3. Stock market prediction

    • kaggle.com
    Updated Aug 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis Andrés García (2023). Stock market prediction [Dataset]. https://www.kaggle.com/datasets/luisandresgarcia/stock-market-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Luis Andrés García
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    PURPOSE (possible uses)

    Non-professional investors often try to find an interesting stock among those in an index (such as the Standard and Poor's 500, Nasdaq, etc.). They need only one company, the best, and they don't want to fail (perform poorly). So, the metric to optimize is accuracy, described as:

    Accuracy = True Positives / (True Positives + False Positives)

    And the predictive model can be a binary classifier.

    The data covers the price and volume of shares of 31 NASDAQ companies in the year 2022.

    Context

    Every data set I found to predict a stock price (investing) aims to find the price for the next day, and only for that stock. But in practical terms, people like to find the best stocks to buy from an index and wait a few days hoping to get an increase in the price of this investment.

    Content

    Rows are grouped by companies and their age (newest to oldest) on a common date. The first column is the company. The following are the age, market, date (separated by year, month, day, hour, minute), share volume, various traditional prices of that share (close, open, high...), some price and volume statistics and target. The target is mainly defined as 1 when the closing price increases by at least 5% in 5 days (open market days). The target is 0 in any other case.

    Complex features and target were made by executing: https://www.kaggle.com/code/luisandresgarcia/202307

    Thanks

    Many thanks to everyone who participates in scientific papers and Kaggle notebooks related to financial investment.

  4. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Sep 1, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6464 points on September 1, 2025, gaining 0.06% from the previous session. Over the past month, the index has climbed 2.13% and is up 16.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  5. List of Companies in The New York Stock Exchange

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). List of Companies in The New York Stock Exchange [Dataset]. https://www.johnsnowlabs.com/marketplace/list-of-companies-in-the-new-york-stock-exchange/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Area covered
    N/A
    Description

    This dataset contains a detailed information on companies listed in the NYSE (The New York Stock Exchange).

  6. f

    NYSE American Listed Companies

    • financialreports.eu
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYSE American (2025). NYSE American Listed Companies [Dataset]. https://financialreports.eu/companies/exchanges/nyse-american/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    NYSE American
    Time period covered
    1908 - Present
    Variables measured
    Trading Hours, Trading Volume, Listed Companies, Market Capitalization
    Description

    Comprehensive dataset of 0 companies listed on NYSE American, including detailed financial information, market data, and corporate filings. This dataset provides real-time updates on trading metrics, company profiles, financial statements, regulatory filings, and market performance indicators. Updated every 30 minutes, it covers key data points such as market capitalization, trading volume, stock prices, company fundamentals, and regulatory compliance information for all listed securities on NYSE American.

  7. f

    New York Stock Exchange Listed Companies

    • financialreports.eu
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Stock Exchange (2025). New York Stock Exchange Listed Companies [Dataset]. https://financialreports.eu/companies/exchanges/new-york-stock-exchange/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    New York Stock Exchange
    Time period covered
    1792 - Present
    Variables measured
    Trading Hours, Trading Volume, Listed Companies, Market Capitalization
    Description

    Comprehensive dataset of 18 companies listed on New York Stock Exchange, including detailed financial information, market data, and corporate filings. This dataset provides real-time updates on trading metrics, company profiles, financial statements, regulatory filings, and market performance indicators. Updated every 30 minutes, it covers key data points such as market capitalization, trading volume, stock prices, company fundamentals, and regulatory compliance information for all listed securities on New York Stock Exchange.

  8. d

    NYSE and Other Listings

    • datahub.io
    Updated Aug 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). NYSE and Other Listings [Dataset]. https://datahub.io/core/nyse-other-listings
    Explore at:
    Dataset updated
    Aug 31, 2017
    Description

    List of companies in the NYSE, and other exchanges.

    Data and documentation are available on NASDAQ's official webpage. Data is updated regularly on the FTP site.

    The file used in this repository: ...

  9. Stock Market Dataset for August 2025

    • kaggle.com
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kshitij Saini (2025). Stock Market Dataset for August 2025 [Dataset]. https://www.kaggle.com/datasets/kshitijsaini121/stock-market-prediction-for-july-2025-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kshitij Saini
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Overview

    This dataset contains comprehensive stock market data for June 2025, capturing daily trading information across multiple companies and sectors. The dataset represents a substantial collection of market data with detailed financial metrics and trading statistics.

    Basic Dataset Information

    • Time Period: June 1-21, 2025 (21 trading days)
    • Total Records: Approximately 11,600+ entries
    • Companies Covered: 500+ unique stocks
    • Data Type: Daily stock market trading data with fundamental metrics

    Markdown Table Format

    Column NameData TypeDescriptionExample Values
    DateDateTrading date in DD-MM-YYYY format01-06-2025, 02-06-2025
    TickerStringStock ticker symbol (3-4 characters)AAPL, GOOGL, TSLA
    Open PriceFloatOpening price of the stock34.92, 206.5, 125.1

    Dataset Information Table

    Dataset Overview

    AttributeDetails
    Dataset NameStock Market Data - June 2025
    File FormatCSV
    File Size~2.5 MB
    Number of Records11,600+
    Number of Features13
    Time PeriodJune 1-21, 2025

    Data Schema

    Column NameData TypeDescriptionExample Values
    DateDateTrading date in DD-MM-YYYY format01-06-2025, 02-06-2025
    TickerStringStock ticker symbol (3-4 characters)AAPL, GOOGL, TSLA, SLH
    Open PriceFloatOpening price of the stock34.92, 206.5, 125.1
    Close PriceFloatClosing price of the stock34.53, 208.45, 124.03
    High PriceFloatHighest price during the trading day35.22, 210.51, 127.4
    Low PriceFloatLowest price during the trading day34.38, 205.12, 121.77
    Volume TradedIntegerNumber of shares traded2,966,611, 1,658,738
    Market CapFloatMarket capitalization in dollars57,381,363,838.88
    PE RatioFloatPrice-to-Earnings ratio29.63, 13.03, 29.19
    Dividend YieldFloatDividend yield percentage2.85, 2.73, 2.64
    EPSFloatEarnings per Share1.17, 16.0, 4.25
    52 Week HighFloatHighest price in the last 52 weeks39.39, 227.38, 138.35
    52 Week LowFloatLowest price in the last 52 weeks28.44, 136.79, 100.69
    SectorStringIndustry sector classificationIndustrials, Energy, Healthcare

    Market Capitalization Tiers

    • Mega Cap (>$1T): 6 companies (AAPL, MSFT, NVDA, AMZN, GOOGL, META)
    • Large Cap ($200B-$1T): 28 companies
    • Mid Cap ($50B-$200B): 47 companies

    Key Market Characteristics

    Price Volatility by Sector

    • Technology: Higher volatility (±3.5% daily range)
    • Energy: High volatility (±4.0% daily range)
    • Utilities: Lower volatility (±1.5% daily range)
    • Healthcare/Financials: Moderate volatility (±2.5% daily range)

    Trading Volume Patterns

    • Mega Cap: 25M - 90M shares daily
    • Large Cap: 8M - 35M shares daily
    • Mid Cap: 2M - 15M shares daily
    • Small Cap: 500K - 5M shares daily

    Financial Metrics Distribution

    • Average P/E Ratio: 25.9 (market-wide)
    • Average Dividend Yield: 1.25%
    • Price Range: $19 (T) to $3,850 (BKNG)
    • EPS Range: $1.50 to $70.00

    Notable Market Features

    High-Value Stocks

    • BKNG (Booking Holdings): $3,650-$3,850 range
    • AVGO (Broadcom): $1,650-$1,750 range
    • REGN (Regeneron): $1,050-$1,150 range
    • LLY (Eli Lilly): $920-$980 range

    High-Dividend Yielders

    • T (AT&T): 7.1% dividend yield
    • VZ (Verizon): 6.2% dividend yield
    • PFE (Pfizer): 5.8% dividend yield

    Growth & Technology Leaders

    • NOW (ServiceNow): P/E ratio of 85
    • NVDA (NVIDIA): P/E ratio of 45
    • TSLA (Tesla): P/E ratio of 55

    Data Quality & Realism Features

    ✅ Authentic Price Ranges: Based on realistic 2025 market projections ✅ Sector-Appropriate Volatility: Different volatility patterns by industry ✅ Correlated Metrics: P/E ratios, dividend yields, and EPS align with market caps ✅ Realistic Trading Volumes: Volume scaled appropriately to market cap ✅ Temporal Consistency: Logical price progression over 53-day period ✅ Market Cap Accuracy: Daily fluctuations reflect actual price movements

    Intended Use Cases

    • Financial Analysis & Modeling: Portfolio optimization, risk assessment
    • Machine Learning Applications: Predictive modeling, algorithmic trading
    • Educational Purposes: Finance courses, data science training
    • Algorithm Development: Backtesting trading strategies
    • Market Research: Sector analysis, correlation studies
    • Visualization Projects: Interactive dashboards, market trend analysis

    This dataset provides a comprehensive foundation for quantitative finance research, offering both breadth across market sectors and depth in daily trading dynamics while maintaining statistical realism throughout the observation period...

  10. c

    Stock Market Dataset

    • cubig.ai
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Stock Market Dataset [Dataset]. https://cubig.ai/store/products/280/stock-market-dataset
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Stock Market Dataset contains metadata on stocks and ETFs listed on NASDAQ, including attributes such as ticker symbol, company name, market classification, ETF status, start date, and last trading date.

    2) Data Utilization (1) Characteristics of the Stock Market Dataset: • Since the dataset includes only static metadata without price data, it is well-suited for preprocessing and classification tasks such as stock filtering, sector labeling, and distinguishing between ETFs and regular stocks.

    (2) Applications of the Stock Market Dataset: • Automated sector classification of stocks: This dataset can be used to automatically tag or analyze stocks by sector using text-based industry keywords.

  11. United States US: No of Listed Domestic Companies: Total

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  12. o

    Listed Companies in Amman Stock Market - Dataset - Open Government Data

    • opendata.gov.jo
    Updated Feb 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Listed Companies in Amman Stock Market - Dataset - Open Government Data [Dataset]. https://opendata.gov.jo/dataset/listed-companies-in-amman-stock-market-364-2020
    Explore at:
    Dataset updated
    Feb 18, 2020
    Description

    this group contains a list of listed companies in Amman stock exchange and their sector , .symbol, code , market and number of shares .

  13. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  14. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  15. Data from: Stock List Dataset

    • kaggle.com
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aditya Kumar (2024). Stock List Dataset [Dataset]. https://www.kaggle.com/datasets/adityakumar5095/stock-list-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aditya Kumar
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Symbol: This acts as a unique identifier for a particular stock on a specific exchange. Just like AAPL represents Apple Inc. on the NASDAQ exchange. Name: This is the full name of the company that issued the stock. Currency: This indicates the currency in which the stock is traded. Examples include USD (US Dollar), EUR (Euro), and JPY (Japanese Yen). Exchange: This refers to the stock exchange where the stock is traded. NASDAQ and NYSE are some well-known exchanges. MIC Code: This stands for Market Identifier Code and is used to uniquely identify a specific exchange or trading venue. Country: This specifies the country of incorporation of the company that issued the stock. Type: the type of the st0ck

  16. f

    OTCQB Listed Companies

    • financialreports.eu
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OTCQB (2025). OTCQB Listed Companies [Dataset]. https://financialreports.eu/companies/exchanges/otcqb/
    Explore at:
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    OTCQB
    Time period covered
    2010 - Present
    Variables measured
    Trading Hours, Trading Volume, Listed Companies, Market Capitalization
    Description

    Comprehensive dataset of 0 companies listed on OTCQB, including detailed financial information, market data, and corporate filings. This dataset provides real-time updates on trading metrics, company profiles, financial statements, regulatory filings, and market performance indicators. Updated every 30 minutes, it covers key data points such as market capitalization, trading volume, stock prices, company fundamentals, and regulatory compliance information for all listed securities on OTCQB.

  17. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  18. Stock Market Data Asia ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Asia ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-asia-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Malaysia, Vietnam, Cyprus, Nepal, Macao, Uzbekistan, Maldives, Kyrgyzstan, Indonesia, Korea (Democratic People's Republic of), Asia
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  19. S

    Slovenia SI: No of Listed Domestic Companies: Total

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Slovenia SI: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/slovenia/financial-sector/si-no-of-listed-domestic-companies-total
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Slovenia
    Variables measured
    Turnover
    Description

    Slovenia SI: Number of Listed Domestic Companies: Total data was reported at 24.000 Unit in 2022. This records a decrease from the previous number of 25.000 Unit for 2021. Slovenia SI: Number of Listed Domestic Companies: Total data is updated yearly, averaging 63.500 Unit from Dec 1993 (Median) to 2022, with 30 observations. The data reached an all-time high of 151.000 Unit in 2001 and a record low of 16.000 Unit in 1993. Slovenia SI: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Slovenia – Table SI.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  20. T

    Sweden Stock Market Index Data

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Sweden Stock Market Index Data [Dataset]. https://tradingeconomics.com/sweden/stock-market
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 1986 - Sep 2, 2025
    Area covered
    Sweden
    Description

    Sweden's main stock market index, the Stockholm, fell to 2578 points on September 2, 2025, losing 2.01% from the previous session. Over the past month, the index has climbed 0.98% and is up 0.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ganesh Bhabad (2024). NASDAQ Company Details and Listings [Dataset]. https://www.kaggle.com/datasets/ganeshbhabad/nasdaq-company-details-and-listings
Organization logo

NASDAQ Company Details and Listings

Detailed Profiles of NASDAQ Companies: Symbols, Market Data, and More

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 11, 2024
Dataset provided by
Kaggle
Authors
Ganesh Bhabad
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

NASDAQ Listed Companies Dataset

Description:

This dataset provides comprehensive information on companies listed on the NASDAQ stock exchange. It includes essential details about each company, making it a valuable resource for financial analysis, stock market research, and investment strategies.

Features:

  • symbol: The unique ticker symbol used to identify the company's stock on the NASDAQ exchange.
  • name: The full name of the company.
  • currency: The currency in which the company's stock is traded.
  • exchange: The stock exchange where the company is listed (in this case, NASDAQ).
  • mic_code: The Market Identifier Code (MIC) for the NASDAQ exchange.
  • country: The country where the company is headquartered.
  • type: The type of company, such as common stock or preferred stock.
  • Usage: This dataset can be used for various purposes including:

Stock Market Analysis:

Analyze stock symbols, company names, and market data.

Financial Modeling:

Incorporate company details into financial models and investment strategies.

Market Research:

Understand the distribution of companies by country and currency.

Data Visualization:

Create visualizations of the NASDAQ market landscape.

Data Source:

The data is sourced from the Twelve Data API, which provides up-to-date financial and stock market information.

Notes: The dataset includes only NASDAQ-listed companies and does not cover other exchanges. Ensure to comply with any data usage policies or licensing agreements associated with the data source. Feel free to adapt the description based on the specific details and attributes of your dataset.

Search
Clear search
Close search
Google apps
Main menu