44 datasets found
  1. d

    Hiring Activity dataset on 5,400 US public companies

    • datarade.ai
    .json, .sql
    Updated Jan 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Contora Inc. (2022). Hiring Activity dataset on 5,400 US public companies [Dataset]. https://datarade.ai/data-products/contora-s-hiring-activity-dataset-on-5-400-us-public-companies-contora-inc
    Explore at:
    .json, .sqlAvailable download formats
    Dataset updated
    Jan 10, 2022
    Dataset authored and provided by
    Contora Inc.
    Area covered
    United States
    Description

    We track hiring activity and employees growth for all US public companies. For each company, we have a link to its Indeed, Glassdoor, and Linkedin profiles, which allows us to understand growth trends in real-time.

    The main fields are the number of open job positions, headcount, and various employee ratings (diversity, salary satisfaction, etc.). The dataset has 1 year of history, and the data is updated daily.

    This data gives answers to such questions as: - Which companies are most actively hiring right now? - Which companies had the most significant growth of employees over the past week/month/year? - Which companies have the highest rates from employees in terms of ESG, and which ones cannot retain an employee for more than a month?

    Such data helps estimate the risks of long-term investing in shares and is valuable for Hedge Funds, M&A firms, and consulting companies.

  2. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2017). undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ASECB2015.SE1500CSCB16?q=A%20M%20CONSTRUCTION%20SERVICES%20INC
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Release Date: 2017-07-13.[NOTE: Includes firms with payroll at any time during 2015. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2015 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Percent of Total Sales of Goods/Services Exported Outside the United States by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2015. ..Release Schedule. . This file was released in July 2017.. ..Key Table Information. . These data are related to all other 2015 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2015 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2015 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Percent of Total Sales of Goods/Services Exported Outside the United States by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2015 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 ...

  3. c

    Self-Employment by Occupation by County - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Self-Employment by Occupation by County - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/self-employment-by-occupation-by-county
    Explore at:
    Dataset updated
    Mar 12, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Self-Employment by Occupation by County reports the total population of employed civilian workers aged 16 years and older by occupation. In the Business Type column, individual Business Types are presented as percentages of the Total employed population for the corresponding occupation in the Occupation column. For example, for 2012-2016, there were approximately 320,110 Service employees in Connecticut, 14.6% of those employees worked in Government. 'Self-Employed, Incorporated' includes workers in their own incorporated businesses, 'Self-Employed, Not Incorporated' includes workers in their own non-incorporated businesses and unpaid family workers, 'Government' includes local, state, and federal government workers, 'Private, Profit' includes employees of for-profit private companies, 'Private, Not-for-profit' includes both wage and salary employees of not-for-profit private companies. These data originate from the American Community Survey (ACS) 5-Year estimates, table S2406.

  4. HR_Dataset

    • kaggle.com
    Updated Dec 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sam Steady (2021). HR_Dataset [Dataset]. https://www.kaggle.com/kadirduran/hr-dataset/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 19, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sam Steady
    Description

    Employee turn-over (also known as "employee churn") is a costly problem for companies. The true cost of replacing an employee can often be quite large. A study by the Center for American Progress found that companies typically pay about one-fifth of an employee’s salary to replace that employee, and the cost can significantly increase if executives or highest-paid employees are to be replaced. In other words, the cost of replacing employees for most employers remains significant. This is due to the amount of time spent to interview and find a replacement, sign-on bonuses, and the loss of productivity for several months while the new employee gets accustomed to the new role.

    In the past, most of the focus on the "rates" such as attrition rate and retention rates. HR Managers compute the previous rates try to predict the future rates using data warehousing tools. These rates present the aggregate impact of churn, but this is the half picture. Another approach can be the focus on individual records in addition to aggregate.

    There are lots of case studies on customer churn are available. In customer churn, you can predict who and when a customer will stop buying. Employee churn is similar to customer churn. It mainly focuses on the employee rather than the customer. Here, you can predict who, and when an employee will terminate the service. Employee churn is expensive, and incremental improvements will give significant results. It will help us in designing better retention plans and improving employee satisfaction.

    The HR dataset has 14,999 samples with various information about the employees. In the given dataset, we have two types of employee one who stayed and another who left the company. This given dataset will be used to predict when employees are going to quit by understanding the main drivers of employee churn.

    We can describe 10 attributes (features) in detail as:

    satisfaction_level : It is employee satisfaction point, which ranges from 0-1.

    last_evaluation : It is evaluated performance by the employer, which also ranges from 0-1.

    number_projects : How many of projects assigned to an employee?

    average_monthly_hours: How many hours in averega an employee worked in a month?

    time_spent_company : time_spent_company means employee experience. The number of years spent by an employee in the company.

    work_accident : Whether an employee has had a work accident or not.

    promotion_last_5years: Whether an employee has had a promotion in the last 5 years or not.

    Departments : Employee's working department/division.

    Salary : Salary level of the employee such as low, medium and high.

    left : Whether the employee has left the company or not.

  5. 2022 Economic Surveys: AB2200CSA04 | Annual Business Survey: Employment Size...

    • data.census.gov
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2024). 2022 Economic Surveys: AB2200CSA04 | Annual Business Survey: Employment Size of Firm Statistics for Employer Firms by Sector, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, Metro Areas, and Counties: 2022 (ECNSVY Annual Business Survey Company Summary) [Dataset]. https://data.census.gov/table/ABSCS2022.AB2200CSA04?g=010XX00US&n=00
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Key Table Information.Table Title.Annual Business Survey: Employment Size of Firm Statistics for Employer Firms by Sector, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, Metro Areas, and Counties: 2022.Table ID.ABSCS2022.AB2200CSA04.Survey/Program.Economic Surveys.Year.2022.Dataset.ECNSVY Annual Business Survey Company Summary.Release Date.2024-12-19.Release Schedule.The Annual Business Survey (ABS) occurs every year, beginning in reference year 2017.For more information about ABS planned data product releases, see Tentative ABS Schedule..Dataset Universe.The dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Methodology.Data Items and Other Identifying Records.Number of employer firms (firms with paid employees)Sales and receipts of employer firms (reported in $1,000s of dollars)Number of employees (during the March 12 pay period)Annual payroll (reported in $1,000s of dollars)These data are aggregated by sex, ethnicity, race, and veteran status when classifiable.The data are also shown for the employment size of firms (during the March 12 pay period):Employment Size: Firms with no employees Firms with 1 to 4 employees Firms with 5 to 9 employees Firms with 10 to 19 employees Firms with 20 to 49 employees Firms with 50 to 99 employees Firms with 100 to 249 employees Firms with 250 to 499 employees Firms with less than 500 employees Firms with 500 employees or more Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the ABS are employer companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2022 reference year data are shown for the total for all sectors (00) and the 2-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, data are shown for the total for all sectors (00) for:Metropolitan Statistical AreasCountiesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2-digit NAICS code level depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.The ABS sample includes firms that are selected with certainty if they have known research and development activities, were included in the 2022 BERD sample, or have high receipts, payroll, or employment. Total sample size is 850,000 firms. The universe is stratified by state, industry group, and expected demographic group. Firms selected to the sample receive a questionnaire. For all data on this table, firms not selected into the sample are represented with administrative, 2022 Economic Census, or other economic surveys records.For more information about the sample design, see Annual Business Survey Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. P-7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0351).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business' data or identity.To comply with data quality standards, data rows with high relative standard errors (RSE) are not presented. Additionally, firm counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the Annual Business Survey Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data a...

  6. Employment for all employees by enterprise size, annual

    • www150.statcan.gc.ca
    • beta.data.urbandatacentre.ca
    • +3more
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employment for all employees by enterprise size, annual [Dataset]. http://doi.org/10.25318/1410021501-eng
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Employment for all employees by enterprise size and North American Industry Classification System (NAICS), last 5 years.

  7. T

    United States ADP Employment Change

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States ADP Employment Change [Dataset]. https://tradingeconomics.com/united-states/adp-employment-change
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 2010 - Jun 30, 2025
    Area covered
    United States
    Description

    Private businesses in the United States fired -33 thousand workers in June of 2025 compared to 29 thousand in May of 2025. This dataset provides the latest reported value for - United States ADP Employment Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. Number of small and medium-sized enterprises in the United States 2014-2029

    • statista.com
    Updated Jul 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of small and medium-sized enterprises in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/7702/coronavirus-impact-on-small-business-in-the-us/
    Explore at:
    Dataset updated
    Jul 3, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of small and medium-sized enterprises in the United States was forecast to continuously decrease between 2024 and 2029 by in total 6.7 thousand enterprises (-2.24 percent). After the fourteenth consecutive decreasing year, the number is estimated to reach 291.94 thousand enterprises and therefore a new minimum in 2029. According to the OECD an enterprise is defined as the smallest combination of legal units, which is an organisational unit producing services or goods, that benefits from a degree of autonomy with regards to the allocation of resources and decision making. Shown here are small and medium-sized enterprises, which are defined as companies with 1-249 employees.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

  9. 2023 Fortune 1000 Companies

    • kaggle.com
    Updated Sep 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    k04dRunn3r (2023). 2023 Fortune 1000 Companies [Dataset]. https://www.kaggle.com/datasets/jeannicolasduval/2023-fortune-1000-companies-info
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    Kaggle
    Authors
    k04dRunn3r
    Description

    Data from Fortune 500's 2023 ranking.
    Includes data on top 1000 companies w/ additional info (Stock symbol/*ticker*, CEO name).

    Update (New dataset): 2024 Fortune 1000 Companies

    What Is the Fortune 1000?

    From Investopedia:

    The Fortune 1000 is an annual list of the 1000 largest American companies maintained by the popular magazine Fortune Fortune ranks the eligible companies by revenue generated from core operations, discounted operations, and consolidated subsidiaries Since revenue is the basis for inclusion, every company is authorized to operate in the United States and files a 10-K or comparable financial statement with a government agency -- .

    Project Background

    Fortune magazine publishes this list every year and some lists can be found from different sources. From looking at this year's available datasets, some features were missing or could not be found. This was built from scraping the standard features as well as what's included on Company Info (such as CEO, Ticker and website) from the Fortune magazine website. Details on how the data was generated can be found on this notebook where a few of the features were also visualized.

    The source code from the 2023 fortune 500 Ranking includes 1000 companies. A reference page (slug) to additional info is included for each companies which were also scrapped to complete the dataset.

    The Dataset

    Available formats: csv, parquet

    Features are follows:

    [Note: References to datatypes are relevant when using the parquet file; Labels refer to the original website names]

    • Rank
        dtype: int64; Label: Rank
    • Company
        dtype: object; Label: Company
    • Ticker
        dtype: object; Label: Ticker
    • Sector
        dtype: category; Label: Sector
    • Industry
        dtype: category; Label: Industry
    • Profitable
        dtype: category; Label: Profitable
    • Founder_is_CEO
        dtype: category; Label: Founder is CEO
    • FemaleCEO
        dtype: category; Label: Female CEO
    • Growth_in_Jobs
        dtype: category; Label: Growth in Jobs
    • Change_in_Rank
        dtype: float64; Label: Change in Rank (Full 1000)
    • Gained_in_Rank
        dtype: category; Label: Gained in Rank
    • Dropped_in_Rank
        dtype: category; Label: Dropped in Rank
    • Newcomer_to_the_Fortune500
        dtype: category; Label: Newcomer to the Fortune 500
    • Global500
        dtype: category; Label: Global 500
    • Best_Companies
        dtype: category; Label: Best Companies
    • Number_of_employees
        dtype: int64; Label: Employees
    • MarketCap_March31_M
        dtype: float64; Label: Market Value — as of March 31, 2023 ($M)
    • Revenues_M
        dtype: int64; Label: Revenues ($M)
    • RevenuePercentChange
        dtype: float64; Label: Revenue Percent Change
    • Profits_M
        dtype: int64; Label: Profits ($M)
    • ProfitsPercentChange
        dtype: float64; Label: Profits Percent Change
    • Assets_M
        dtype: int64; Label: Assets ($M)
    • CEO
        dtype: object; Label: CEO
    • Country
        dtype: category; Label: Country
    • HeadquartersCity
        dtype: object; Label: Headquarters City
    • HeadquartersState
        dtype: category; Label: Headquarters State
    • Website
        dtype: object; Label: Website
    • CompanyType
        dtype: category; Label: Company type
    • Footnote
        dtype: object; Label: Footnote
    • MarketCap_Updated_M
        dtype: float64; Label: Market value ($M)
    • Updated
        dtype: datetime64[ns]; Label: Updated Click to add a cell.
  10. 2023 Economic Surveys: CB2300CBP | All Sectors: County Business Patterns,...

    • census.gov
    • data.census.gov
    • +1more
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2025). 2023 Economic Surveys: CB2300CBP | All Sectors: County Business Patterns, including ZIP Code Business Patterns, by Legal Form of Organization and Employment Size Class for the U.S., States, and Selected Geographies: 2023 (ECNSVY Business Patterns County Business Patterns) [Dataset]. https://www.census.gov/data/tables/2023/econ/cbp/2023-cbp-tables.html
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Key Table Information.Table Title.All Sectors: County Business Patterns, including ZIP Code Business Patterns, by Legal Form of Organization and Employment Size Class for the U.S., States, and Selected Geographies: 2023.Table ID.CBP2023.CB2300CBP.Survey/Program.Economic Surveys.Year.2023.Dataset.ECNSVY Business Patterns County Business Patterns.Source.U.S. Census Bureau, 2023 Economic Surveys, Business Patterns.Release Date.2025-06-26.Release Schedule.County Business Patterns (CBP) data, including ZIP Code Business Patterns (ZBP) data are released annually around the month of June. For more information about CBP data releases, see County Business Patterns Updates..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2023, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2017 North American Industry Classification System (NAICS). For more information, see County Business Patterns Methodology..Methodology.Data Items and Other Identifying Records.Number of establishmentsAnnual payroll ($1,000)First-quarter payroll ($1,000)Number of employees (during the pay period including March 12)Noise range for annual payroll, first-quarter payroll, and number of employees during the pay period including March 12Definitions of data items can be found in the table by clicking on the column header and selecting “Column Notes” or by accessing the County Business Patterns Glossary..Unit(s) of Observation.The units for CBP are employer establishments with paid employees extracted from the Business Register, Census Bureau's source of information on employer establishments. An establishment is a single physical location at which business is conducted or services or industrial operations are performed. An establishment is not necessarily equivalent to a company or enterprise, which may consist of one or more establishments. For more information, see County Business Patterns Methodology..Geography Coverage.The data are shown at the U.S., State, County, Metropolitan and Micropolitan Statistical Areas, Combined Statistical Area, 5-digit ZIP code, and Congressional District levels. Also available are data for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) at the state and county equivalent levels.Four additional employment-size classes (1,000 to 1,499 employees, 1,500 to 2,499 employees, 2,500 to 4,999 employees, and 5,000 or more employees) are available at the CSA, MSA, and county-levels.For information about geographic classification, see Program Methodology..Industry Coverage.The data are shown at the 2- through 6-digit NAICS code levels for all sectors with published data, and for NAICS code 00 (Total for all sectors).ZBP data by employment size class, shown at the 2- through 6-digit NAICS code levels, only contains data on the number of establishments. ZBP data shown for NAICS code 00 (Total across all sectors) contains data on the number of establishments, total employment, first quarter payroll, and annual payroll.For information about industry coverage, see Program Methodology..Business Characteristics.Data are classified by Legal Form of Organization (U.S. and state level only) and employment size category of the establishment (1,000 to 1,499 employees, 1,500 to 2,499 employees, 2,500 to 4,999 employees, and 5,000 or more employees). Definitions of data items can be found in the table by clicking on the column header and selecting “Column Notes” or by accessing the County Business Patterns Glossary..Sampling.There is no sampling done for County Business Patterns. CBP data are derived from a complete tabulation of all establishments on the Census Bureau’s Business Register that meet the in-scope criteria for being included in CBP. For more information about methodology and data limitations, see County Business Patterns Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7503949, Disclosure Review Board (DRB) approval number: CBDRB-FY25-0158). Beginning with reference year 2007, CBP and ZBP data are released using the Noise Infusion disclosure avoidance methodology to protect confidentiality. To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. In accordance with U.S. Code, Title 13, Section 9, no data are published that would disclose the operations of an individual employer. For more information on the coverage, disclosure avoidance, and methodology of the CBP and ZBP data products see Program Methodology..Technical Documentation/Methodology.For detailed information see, Program Methodology..Weigh...

  11. p

    State Employment Departments in Colorado, United States - 5 Verified...

    • poidata.io
    csv, excel, json
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Poidata.io (2025). State Employment Departments in Colorado, United States - 5 Verified Listings Database [Dataset]. https://www.poidata.io/report/state-employment-department/united-states/colorado
    Explore at:
    excel, json, csvAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Poidata.io
    Area covered
    Colorado, United States
    Description

    Comprehensive dataset of 5 State employment departments in Colorado, United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.

  12. 2015 Economic Surveys: SE1500CSCB40 | Statistics for U.S. Employer Firms by...

    • data.census.gov
    Updated Jul 15, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2017). 2015 Economic Surveys: SE1500CSCB40 | Statistics for U.S. Employer Firms by Decision Making for Sales and Purchases Activities by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2015 (ECNSVY Annual Survey of Entrepreneurs Annual Survey of Entrepreneurs Characteristics of Businesses) [Dataset]. https://data.census.gov/table/ASECB2015.SE1500CSCB40?q=MAK%20CO
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2015
    Area covered
    United States
    Description

    Release Date: 2017-07-13.[NOTE: Includes firms with payroll at any time during 2015. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2015 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Decision Making for Sales and Purchases Activities by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2015. ..Release Schedule. . This file was released in July 2017.. ..Key Table Information. . These data are related to all other 2015 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2015 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2015 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Decision Making for Sales and Purchases Activities by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2015 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 ...

  13. H1B LCA Disclosure Data (2020-2024)

    • kaggle.com
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zongao Bian (2025). H1B LCA Disclosure Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/zongaobian/h1b-lca-disclosure-data-2020-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zongao Bian
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About This Dataset

    This dataset provides a comprehensive record of Labor Condition Application (LCA) disclosures for H1B visa petitions filed with the U.S. Department of Labor (DOL) from 2020 to 2024. It has been cleaned and prepared for public analysis to offer valuable insights into employment trends, job categories, salaries, and geographic distribution of H1B workers.

    What is H1B?

    The H1B visa is a non-immigrant visa that allows U.S. companies to employ foreign workers in specialty occupations requiring theoretical or technical expertise. These roles typically include fields such as IT, engineering, finance, healthcare, and more. The H1B program is critical for addressing skill gaps in the U.S. workforce and supporting economic growth.

    What is LCA?

    The Labor Condition Application (LCA) is a prerequisite for filing an H1B visa petition. Employers submit the LCA to the DOL to ensure compliance with wage and working condition requirements. The LCA process protects both U.S. workers and foreign employees by enforcing: - Payment of prevailing wages. - Assurance that hiring foreign workers will not adversely affect local labor conditions.

    Each LCA disclosure contains information about the employer, job title, job location, wages, and visa classification.

    Why Analyze LCA Disclosure Data (2020-2024)?

    The dataset spans a crucial period (2020-2024) characterized by: - Pandemic Impact: Changes in employment patterns and visa policies due to COVID-19. - Remote Work Trends: Shifts in work location dynamics for H1B visa holders. - Tech Layoffs and Restructuring: Evolving job roles and industry demands, especially in tech. - Economic Recovery: Insights into how industries and geographic regions rebounded post-pandemic.

    Analyzing this data can provide: 1. Employment Trends: Discover trends in job roles, industries, and geographic locations hiring H1B workers. 2. Wage Comparisons: Compare wages across job titles, industries, and states. 3. Policy Insights: Assess the impact of government policies on foreign employment. 4. Geographic Distribution: Identify areas with the highest demand for H1B workers. 5. Industry Insights: Explore the reliance of various industries on foreign talent.

    Key Features of This Dataset

    • Years Covered: 2020 to 2024.
    • Number of Records: Includes all LCAs filed during this period.
    • Attributes: Comprehensive fields such as case number, job title, employer name, wage data, work location, and visa classification.
    • Source: Data is based on public disclosures from the U.S. Department of Labor.

    Who Can Use This Dataset?

    • Researchers: To study the economic impact of H1B workers and labor trends.
    • Policymakers: To analyze the effects of visa policies on labor markets.
    • Job Seekers: To explore prevailing wages and in-demand job roles for H1B petitions.
    • Businesses: To understand competitive trends in hiring foreign talent.
  14. Tech layoffs worldwide 2020-2024, by quarter

    • statista.com
    • ai-chatbox.pro
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Tech layoffs worldwide 2020-2024, by quarter [Dataset]. https://www.statista.com/statistics/199999/worldwide-tech-layoffs-covid-19/
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The tech industry had a rough start to 2024. Technology companies worldwide saw a significant reduction in their workforce in the first quarter of 2024, with over 57 thousand employees being laid off. By the second quarter, layoffs impacted more than 43 thousand tech employees. In the final quarter of the year around 12 thousand employees were laid off. Layoffs impacting all global tech giants Layoffs in the global market escalated dramatically in the first quarter of 2023, when the sector saw a staggering record high of 167.6 thousand employees losing their jobs. Major tech giants such as Google, Microsoft, Meta, and IBM all contributed to this figure during this quarter. Amazon, in particular, conducted the most rounds of layoffs with the highest number of employees laid off among global tech giants. Industries most affected include the consumer, hardware, food, and healthcare sectors. Notable companies that have laid off a significant number of staff include Flink, Booking.com, Uber, PayPal, LinkedIn, and Peloton, among others. Overhiring led the trend, but will AI keep it going? Layoffs in the technology sector started following an overhiring spree during the COVID-19 pandemic. Initially, companies expanded their workforce to meet increased demand for digital services during lockdowns. However, as lockdowns ended, economic uncertainties persisted and companies reevaluated their strategies, layoffs became inevitable, resulting in a record number of 263 thousand laid off employees in the global tech sector by trhe end of 2022. Moreover, it is still unclear how advancements in artificial intelligence (AI) will impact layoff trends in the tech sector. AI-driven automation can replace manual tasks leading to workforce redundancies. Whether through chatbots handling customer inquiries or predictive algorithms optimizing supply chains, the pursuit of efficiency and cost savings may result in more tech industry layoffs in the future.

  15. 2012 Economic Surveys: SB1200CSCB12 | Statistics for All U.S. Firms With...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN, 2012 Economic Surveys: SB1200CSCB12 | Statistics for All U.S. Firms With Paid Employees by Year the Business Was Originally Established or Self-Employment Activity Begun by Employment Size of Firm, Gender, Ethnicity, Race, and Veteran Status for the U.S.: 2012 (ECNSVY Survey of Business Owners Survey of Business Owners Characteristics of Business) [Dataset]. https://data.census.gov/table/SBOCB2012.SB1200CSCB12?q=EM+B+Construction++Incorporated
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2012
    Area covered
    United States
    Description

    Release Date: 2016-02-23.[NOTE: Includes firms with payroll at any time during 2012. Employment reflects the number of paid employees during the March 12 pay period. Data are based on the 2012 Economic Census, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2012 Survey of Business Owners. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, and veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or employment size group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for All U.S. Firms With Paid Employees by Year the Business Was Originally Established or Self-Employment Activity Begun by Employment Size of Firm, Gender, Ethnicity, Race, and Veteran Status for the U.S.: 2012. ..Release Schedule. . The data in this file was released in February 2016.. ..Key Table Information. . This data is related to all other 2012 SBO files.. Refer to the Methodology section of the Survey of Business Owners website for additional information.. ..Universe. . The universe for the 2012 Survey of Business Owners (SBO) includes all U.S. firms operating during 2012 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown at the U.S. level only.. ..Industry Coverage. . The data are shown for the total of all sectors (NAICS 00).. ..Data Items and Other Identifying Records. . Statistics for All U.S. Firms With Paid Employees by Year the Business Was Originally Established or Self-Employment Activity Begun by Employment Size of Firm, Gender, Ethnicity, Race, and Veteran Status for the U.S.: 2012 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are published by year the business was originally established or self-employment activity begun, and employment size of firm and by gender, ethnicity, race, and veteran status.. ..Sort Order. . Data are presented in ascending levels by:. . Gender, ethnicity, race, and veteran status (CBGROUP). Employment size of firm (EMPSZFI). Year the business was originally established or self-employment activity begun (YRESTBUS). . The data are sorted on underlying control field values, so control fields may not appear in alphabetical order.. ..FTP Download. . Download the entire SB1200CSCB12 table at: https://www2.census.gov/programs-surveys/sbo/data/2012/SB1200CSCB12.zip. ..Contact Information. . To contact the Survey of Business Owners staff:. . Visit the website at www.census.gov/programs-surveys/sbo.html.. Email general, nonsecure, and unencrypted messages to ewd.survey.of.business.owners@census.gov.. Call 301.763.3316 between 7 a.m. and 5 p.m. (EST), Monday through Friday.. Write to:. U.S. Census Bureau. Survey of Business Owners. 4600 Silver Hill Road. Washington, DC 20233. . . ...Source: U.S. Census Bureau, 2012 Survey of Business Owners.Note: The data ...

  16. h

    Virtual-Personal-Assistants-for-Enterprises

    • huggingface.co
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globose Technology Solutions (2025). Virtual-Personal-Assistants-for-Enterprises [Dataset]. https://huggingface.co/datasets/globosetechnology12/Virtual-Personal-Assistants-for-Enterprises
    Explore at:
    Dataset updated
    Mar 6, 2025
    Authors
    Globose Technology Solutions
    Description

    Problem Statement 👉 Download the case studies here A large enterprise faced challenges in managing the administrative workload for its employees. Tasks such as scheduling meetings, organizing emails, and retrieving documents consumed significant time, reducing productivity and detracting from core responsibilities. The organization sought a solution to automate these tasks, allowing employees to focus on higher-value activities. Challenge Implementing AI-driven virtual assistants for… See the full description on the dataset page: https://huggingface.co/datasets/globosetechnology12/Virtual-Personal-Assistants-for-Enterprises.

  17. Employment by industry, annual

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employment by industry, annual [Dataset]. http://doi.org/10.25318/1410020201-eng
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Number of employees by North American Industry Classification System (NAICS) and type of employee, last 5 years.

  18. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. r

    Early Indicators of Later Work Levels Disease and Death (EI) - Union Army...

    • rrid.site
    • scicrunch.org
    • +3more
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets [Dataset]. http://identifiers.org/RRID:SCR_008921
    Explore at:
    Dataset updated
    Jun 17, 2025
    Description

    A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836

  20. Business Funding Data in Indonesia

    • kaggle.com
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2024). Business Funding Data in Indonesia [Dataset]. https://www.kaggle.com/datasets/techsalerator/business-funding-data-in-indonesia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Techsalerator
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Techsalerator’s Business Funding Data for Indonesia

    Techsalerator’s Business Funding Data for Indonesia provides a comprehensive and insightful collection of information essential for businesses, investors, and financial analysts. This dataset offers an in-depth analysis of funding activities across various sectors in Indonesia, capturing and categorizing data related to funding rounds, investment sources, and financial milestones.

    For access to the full dataset, contact us at info@techsalerator.com or visit https://www.techsalerator.com/contact-us.

    Techsalerator’s Business Funding Data for Indonesia

    Techsalerator’s Business Funding Data for Indonesia delivers a detailed and insightful overview of critical information for businesses, investors, and financial analysts. This dataset provides a thorough examination of funding activities across diverse sectors in Indonesia, detailing data related to funding rounds, investment sources, and key financial milestones.

    Top 5 Key Data Fields

    Company Name: Identifies the company receiving funding. This information helps investors identify potential opportunities and allows analysts to monitor funding trends within specific industries.

    Funding Amount: Shows the total amount of funding a company has received. Understanding these amounts reveals insights into the financial health and growth potential of businesses and the scale of investment activities.

    Funding Round: Indicates the stage of funding, such as seed, Series A, Series B, or later stages. This helps investors assess a business’s maturity and growth trajectory.

    Investor Name: Provides details about the investors or investment firms involved. Knowing the investors helps gauge the credibility of the funding source and their strategic interests.

    Investment Date: Records when the funding was completed. The timing of investments can reflect market trends, investor confidence, and potential impacts on a company’s future.

    Top 5 Funding Trends in Indonesia

    Technology and Startups: Significant investments are being made in technology startups, including fintech, e-commerce, and software development. These investments are critical for fostering innovation and driving digital transformation in Indonesia.

    Renewable Energy: With a growing focus on sustainability, funding is directed towards renewable energy projects such as solar, wind, and bioenergy, aiming to reduce reliance on fossil fuels and promote environmental sustainability.

    Healthcare and Biotechnology: Increased funding is flowing into healthcare infrastructure, biotechnology, and health tech to address the healthcare needs of the population and support medical research and innovation.

    Agriculture and Food Security: Funding is being allocated to modernize agricultural practices, enhance food security, and support agritech solutions that improve productivity and sustainability in the sector.

    Education and Skill Development: Investments are directed towards educational initiatives and vocational training programs aimed at improving literacy rates, enhancing skills, and creating employment opportunities.

    Top 5 Companies with Notable Funding Data in Indonesia

    Gojek: A leading tech company providing ride-hailing, delivery, and digital payment services, Gojek has received substantial funding to expand its services and enhance its technology platform.

    Tokopedia: As one of Indonesia’s largest e-commerce platforms, Tokopedia has secured significant investment to support its growth, enhance its platform, and expand its market presence.

    Traveloka: This travel and lifestyle platform has garnered notable funding to improve its services, expand its offerings, and strengthen its position in the Southeast Asian market.

    Bukalapak: Another major e-commerce player, Bukalapak has attracted substantial investment to bolster its platform, enhance user experience, and support its expansion efforts.

    Halodoc: A health tech company providing telemedicine services, Halodoc has received significant funding to expand its digital health solutions and improve access to healthcare across Indonesia.

    Accessing Techsalerator’s Business Funding Data

    To obtain Techsalerator’s Business Funding Data for Indonesia, contact info@techsalerator.com with your specific needs. Techsalerator will provide a customized quote based on the required data fields and records, with delivery available within 24 hours. Ongoing access options can also be discussed.

    Included Data Fields

    Company Name Funding Amount Funding Round Investor Name Investment Date Funding Type (Equity, Debt, Grants, etc.) Sector Focus Deal Structure Investment Stage Contact Information For detailed insights into funding activities and financial trends in Indonesia, Techsalerator’s dataset is an invaluable resource for investors, business analysts, and financial professionals seeking informed, strategic decisions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Contora Inc. (2022). Hiring Activity dataset on 5,400 US public companies [Dataset]. https://datarade.ai/data-products/contora-s-hiring-activity-dataset-on-5-400-us-public-companies-contora-inc

Hiring Activity dataset on 5,400 US public companies

Explore at:
.json, .sqlAvailable download formats
Dataset updated
Jan 10, 2022
Dataset authored and provided by
Contora Inc.
Area covered
United States
Description

We track hiring activity and employees growth for all US public companies. For each company, we have a link to its Indeed, Glassdoor, and Linkedin profiles, which allows us to understand growth trends in real-time.

The main fields are the number of open job positions, headcount, and various employee ratings (diversity, salary satisfaction, etc.). The dataset has 1 year of history, and the data is updated daily.

This data gives answers to such questions as: - Which companies are most actively hiring right now? - Which companies had the most significant growth of employees over the past week/month/year? - Which companies have the highest rates from employees in terms of ESG, and which ones cannot retain an employee for more than a month?

Such data helps estimate the risks of long-term investing in shares and is valuable for Hedge Funds, M&A firms, and consulting companies.

Search
Clear search
Close search
Google apps
Main menu