Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Disclaimer: Educational Purposes Only
The financial and International Securities Identification Number (ISIN) data listed on this platform is provided solely for educational purposes. The information is intended to serve as general guidance and does not constitute financial advice, an endorsement, or a recommendation for the purchase or sale of any securities.
While we strive to ensure the accuracy and timeliness of the information presented, we make no representations or warranties, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the provided data. Users are encouraged to independently verify any information obtained from this platform before making any investment decisions.
This platform and its operators are not responsible for any errors, omissions, or inaccuracies in the provided data, nor for any actions taken in reliance on such information. Users are strongly advised to conduct thorough research and seek the advice of qualified financial professionals before making any investment decisions.
The use of International Securities Identification Numbers (ISINs) and other financial data is subject to various regulations and licensing agreements. Users are responsible for complying with all applicable laws and respecting any terms and conditions associated with the use of such data.
By accessing and using this platform, users acknowledge and agree that they are doing so at their own risk and discretion. This educational content is not a substitute for professional financial advice, and users should consult with qualified professionals for specific guidance tailored to their individual circumstances.
Facebook
TwitterThis dataset contains a detailed information on companies listed in the NYSE (The New York Stock Exchange).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides daily stock data for some of the top companies in the USA stock market, including major players like Apple, Microsoft, Amazon, Tesla, and others. The data is collected from Yahoo Finance, covering each company’s historical data from its starting date until today. This comprehensive dataset enables in-depth analysis of key financial indicators and stock trends for each company, making it valuable for multiple applications.
The dataset contains the following columns, consistent across all companies:
Machine Learning & Deep Learning:
Data Science:
Data Analysis:
Financial Research:
This dataset is a powerful tool for analysts, researchers, and financial enthusiasts, offering versatility across multiple domains from stock analysis to algorithmic trading models.
Facebook
TwitterList of companies in the NYSE, and other exchanges.
Data and documentation are available on NASDAQ's official webpage. Data is updated regularly on the FTP site.
The file used in this repository: ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden's main stock market index, the Stockholm 30, fell to 2782 points on December 2, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.95% and is up 8.08% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Title: Stock Prices of 500 Biggest Companies by Market Cap (Last 5 Years)
Description: This dataset comprises historical stock market data extracted from Yahoo Finance, spanning a period of five years. It includes daily records of stock performance metrics for the top 500 companies based on market capitalization.
Attributes: 1. Date: The date corresponding to the recorded stock market data. 2. Open: The opening price of the stock on a given date. 3. High: The highest price of the stock reached during the trading day. 4. Low: The lowest price of the stock observed during the trading day. 5. Close: The closing price of the stock on a specific date. 6. Volume: The volume of shares traded on the given date. 7. Dividends: Any dividend payments made by the company on that date (if applicable). 8. Stock Splits: Information regarding any stock splits occurring on that date. 9. Company: Ticker symbol or identifier representing the respective company.
Usefulness: - Investors and analysts can leverage this dataset to conduct various analyses such as trend analysis, volatility assessment, and predictive modeling. - Researchers can explore correlations between stock prices of different companies, sector-wise performance, and market trends over the specified duration. - Machine learning enthusiasts can employ this dataset for developing predictive models for stock price forecasting or anomaly detection.
Note: Prior to using this dataset, it's recommended to perform data cleaning, handling missing values, and verifying the consistency of data across companies and time periods.
License: The dataset is sourced from Yahoo Finance and is provided for analytical purposes. Refer to Yahoo Finance's terms of use for further details on data usage and licensing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel's main stock market index, the TA-125, rose to 3538 points on December 2, 2025, gaining 1.75% from the previous session. Over the past month, the index has climbed 4.40% and is up 50.06% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong's main stock market index, the HK50, rose to 26095 points on December 2, 2025, gaining 0.24% from the previous session. Over the past month, the index has declined 0.24%, though it remains 32.15% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterList of Licensed Companies to Deal at Amman Stock Market and any other related data such as Address, company capital, Legal Capacity and Granted License
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">
This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.
There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.
The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.
Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.
To extract the data provided in the attachment, various criteria were applied:
Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.
Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.
In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).
As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">
The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.
The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">
Geography: Stock Market Index of the World Top Economies
Time period: Jan 01, 2003 – June 30, 2023
Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR
File Type: CSV file
This is not a financial advice; due diligence is required in each investment decision.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy's main stock market index, the IT40, rose to 43652 points on December 2, 2025, gaining 0.91% from the previous session. Over the past month, the index has climbed 0.99% and is up 29.04% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Italy. Italy Stock Market Index (IT40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Venezuela's main stock market index, the IBC, rose to 1554 points on December 2, 2025, gaining 0.15% from the previous session. Over the past month, the index has declined 2.61%, though it remains 1,361.02% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Venezuela. Venezuela Stock Market (IBVC) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.