The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sadly, the trend of fatal police shootings in the United States seems to only be increasing, with a total 1,173 civilians having been shot, 248 of whom were Black, as of December 2024. In 2023, there were 1,164 fatal police shootings. Additionally, the rate of fatal police shootings among Black Americans was much higher than that for any other ethnicity, standing at 6.1 fatal shootings per million of the population per year between 2015 and 2024. Police brutality in the U.S. In recent years, particularly since the fatal shooting of Michael Brown in Ferguson, Missouri in 2014, police brutality has become a hot button issue in the United States. The number of homicides committed by police in the United States is often compared to those in countries such as England, where the number is significantly lower. Black Lives Matter The Black Lives Matter Movement, formed in 2013, has been a vocal part of the movement against police brutality in the U.S. by organizing “die-ins”, marches, and demonstrations in response to the killings of black men and women by police. While Black Lives Matter has become a controversial movement within the U.S., it has brought more attention to the number and frequency of police shootings of civilians.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Police Killings US’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/azizozmen/police-killings-us on 13 February 2022.
--- Dataset description provided by original source is as follows ---
"In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article
For more information about this story
This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.
2016 PoliceKillingUS DATASET
2017 PoliceKillingUS DATASET
2018 PoliceKillingUS DATASET
2019 PoliceKillingUS DATASET
2020 PoliceKillingUS DATASET
Features at the Dataset:
The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:
The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer was wearing a body camera and it may have recorded some portion of the incident.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 12 release notes:Adds 2021 data.Version 11 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will (probably, I haven't seen confirmation either way) be the last LEOKA data they release. Changes .rda file to .rds.Version 10 release notes:Changes release notes description, does not change data.Version 9 release notes:Adds data for 2019.Version 8 release notes:Fix bug for years 1960-1971 where the number of months reported variable was incorrectly down by 1 month. I recommend caution when using these years as they only report either 0 or 12 months of the year, which differs from every other year in the data. Added the variable officers_killed_total which is the sum of officers_killed_by_felony and officers_killed_by_accident.Version 7 release notes:Adds data from 2018Version 6 release notes:Adds data in the following formats: SPSS and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 5 release notes: Adds data for 1960-1974 and 2017. Note: many columns (including number of female officers) will always have a value of 0 for years prior to 1971. This is because those variables weren't collected prior to 1971. These should be NA, not 0 but I'm keeping it as 0 to be consistent with the raw data. Removes support for .csv and .sav files.Adds a number_of_months_reported variable for each agency-year. A month is considered reported if the month_indicator column for that month has a value of "normal update" or "reported, not data."The formatting of the monthly data has changed from wide to long. This means that each agency-month has a single row. The old data had each agency being a single row with each month-category (e.g. jan_officers_killed_by_felony) being a column. Now there will just be a single column for each category (e.g. officers_killed_by_felony) and the month can be identified in the month column. This also results in most column names changing. As such, be careful when aggregating the monthly data since some variables are the same every month (e.g. number of officers employed is measured annually) so aggregating will be 12 times as high as the real value for those variables. Adds a date column. This date column is always set to the first of the month. It is NOT the date that a crime occurred or was reported. It is only there to make it easier to create time-series graphs that require a date input.All the data in this version was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. Data is the same as from NACJD but using all FBI files makes cleaning easier as all column names are already identical. Version 4 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 3 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The LEOKA data sets contain highly detailed data about the number of officers/civilians employed by an agency and how many officers were killed or assaulted. All the data was acquired from the FBI as text/DAT files and read into R using the package asciiSetupReader. The FBI also provided a PDF file explaining how to create the setup file to read the data. Both the FBI's PDF and the setup file I made are included in the zip files. About 7% of all agencies in the data report more officers or civilians than population. As such, I removed the officers/civilians per 1,000 population variables. You should exercise caution if deciding to generate and use these variables yourself. Several agency had impossible large (>15) officer deaths in a single month. For those months I changed the value to NA. The UCR Handbook (https://ucr.fbi.gov/additional-ucr-publications/ucr_handbook.pdf/view) describes the LEOKA data as follows:"The UCR Program collects data from all contributing agencies ... on officer line-of-duty deaths and assaults. Reporting agencies must submit data on ... their own duly sworn officers feloniously or accidentally killed or assaulted in the line of duty. The purpose of this data collection is to identify situations in which
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Washington Post compiled a dataset of every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.
In 2015, The Post began tracking more than a dozen details about each killing by culling local news reports, law enforcement websites and social media and by monitoring independent databases such as Killed by Police and Fatal Encounters. The available features are: - Race of the deceased; - Circumstances of the shooting; - Whether the person was armed; - Whether the victim was experiencing a mental-health crisis; - Among others.
In 2016, The Post is gathering additional information about each fatal shooting that occurs this year and is filing open-records requests with departments. More than a dozen additional details are being collected about officers in each shooting.
The Post is documenting only those shootings in which a police officer, in the line of duty, shot and killed a civilian — the circumstances that most closely parallel the 2014 killing of Michael Brown in Ferguson, Mo., which began the protest movement culminating in Black Lives Matter and an increased focus on police accountability nationwide. The Post is not tracking deaths of people in police custody, fatal shootings by off-duty officers or non-shooting deaths.
The FBI and the Centers for Disease Control and Prevention log fatal shootings by police, but officials acknowledge that their data is incomplete. In 2015, The Post documented more than two times more fatal shootings by police than had been recorded by the FBI. Last year, the FBI announced plans to overhaul how it tracks fatal police encounters.
If you use this dataset in your research, please credit the authors.
BibTeX
@misc{wapo-police-shootings-bot , author = {The Washington Post}, title = {data-police-shootings}, month = jan, year = 2015, publisher = {Github}, url = {https://github.com/washingtonpost/data-police-shootings} }
License
CC BY NC SA 4.0
Splash banner
Image by pixabay avaiable on pexels.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Police fatalities from 2000 to 2016
This dataset aims to provide insight into individuals who were killed during altercations with police. It includes information on their age, race, mental health status, weapons they were armed with, and if they were fleeing.
some of the features are in the original data and the others were added in this updated version. 1. UID, Unique ID of the murdered, In the original data 2. Name, The name of the murdered, In the original data 3. Age, The age of the murdered, In the original data 4. Stages of Life, The age stage of the murdered, Added in this updated version 5. Gender, The Gender of the murdered, In the original data 6. Race, The Race of the murdered, In the original data 7. Date, The date of death, In the original data 8. Year, The year in which the death occurred, Added in this updated version 9. Quarter, The Quarter in which the death occurred, Added in this updated version 10. Month, The month in which the death occurred, Added in this updated version 11. Week, The week in which the death occurred, Added in this updated version 12. Day, The day in which the death occurred, Added in this updated version 13. City, The City in which the death occurred, In the original data 14. State, The State in which the death occurred, In the original data 15. Region, The Region in which the death occurred, Added in this updated version 16. Manner of death In what way was the victim killed?, In the original data 17. Armed, Did the victim have a weapon?, In the original data 18. Mental illness, Was the victim mentally ill?, In the original data 19. Flee, Did the victim try to escape?, In the original data
This dataset comes from https://data.world/awram/us-police-involved-fatalities.
This dataset contains information about fatal shooting of civilians by police officers in the US since Jan 1st, 2015. The data about the shootings was collected by the Washington Post in their fatal police shootings dataset. The city locations were geocoded using OpenStreetMap Nominatim.
fatal-police-shootings-data.csv
contains information about each shooting. Each row is a shooting, and columns contain information about
CityLocations.csv
contains the latitude and longitude for each city present in fatal-police-shootings-data.csv
.
The data in fatal-police-shootings-data.csv
was collected by the Washington Post, and is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.
The data in CityLocations.csv
was geocoded using OpenStreetMap Nominatim, and is licensed under the Open Database License.
Cover image by Spenser.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive review of an aggregated dataset, containing any death happening between the years 2015 to 2021 that is inflicted by an on-duty or off-duty officer where the officer fatally shoots the victim. The dataset is called aggregated because it's an aggregation of the observations inside three fatal police datasets: Fatal Encounters, Mapping Police Violence, Washington Post.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Counted is a project by the Guardian – and you – working to count the number of people killed by police and other law enforcement agencies in the United States throughout 2015 and 2016, to monitor their demographics and to tell the stories of how they died.
The database will combine Guardian reporting with verified crowdsourced information to build a more comprehensive record of such fatalities. The Counted is the most thorough public accounting for deadly use of force in the US, but it will operate as an imperfect work in progress – and will be updated by Guardian reporters and interactive journalists frequently.
Any deaths arising directly from encounters with law enforcement will be included in the database. This will inevitably include, but will likely not be limited to, people who were shot, tasered and struck by police vehicles as well those who died in police custody. Self-inflicted deaths during encounters with law enforcement or in police custody or detention facilities will not be included.
The US government has no comprehensive record of the number of people killed by law enforcement. This lack of basic data has been glaring amid the protests, riots and worldwide debate set in motion by the fatal police shooting of Michael Brown in August 2014. The Guardian agrees with those analysts, campaign groups, activists and authorities who argue that such accounting is a prerequisite for an informed public discussion about the use of force by police.
Contributions of any information that may improve the quality of our data will be greatly welcomed as we work toward better accountability. Please contact us at thecounted@theguardian.com.
CREDITS
Research and Reporting: Jon Swaine, Oliver Laughland, Jamiles Lartey
Design and Production: Kenan Davis, Rich Harris, Nadja Popovich, Kenton Powell
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🚓 Fatal Police Shootings’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/fatal-police-shootingse on 13 February 2022.
--- Dataset description provided by original source is as follows ---
The Washington Post has tracked fatal police shootings in the US since 2015, using news and police reports as well as social media and databases like
Killed by Police
andFatal Encounters
.The collected data include the race, gender, and age of the deceased, the circumstances of the shooting, and whether the person was armed or experiencing a mental-health crisis.
The Washington Post updates visualizations of the data and provides more information about methodology on the Fatal Force page.
Source: https://github.com/washingtonpost/data-police-shootings
Updated: synced daily
License: CC BY-NC-SAThis dataset was created by Data Society and contains around 7000 samples along with Is Geocoding Exact, Armed, technical information and other features such as: - Body Camera - State - and more.
- Analyze Latitude in relation to Manner Of Death
- Study the influence of Name on Age
- More datasets
If you use this dataset in your research, please credit Data Society
--- Original source retains full ownership of the source dataset ---
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the details of deaths in police custody/lock-up compiled by NCRB. It has details of deaths of both 'persons in remand' and 'persons not in remand'.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘💉 Opioid Overdose Deaths’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/opioid-overdose-deathse on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Opioid addiction and death rates in the U.S. and abroad have reached "epidemic" levels. The CDC's data reflects the incredible spike in overdoses caused by drugs containing opioids.
The United States is experiencing an epidemic of drug overdose (poisoning) deaths. Since 2000, the rate of deaths from drug overdoses has increased 137%, including a 200% increase in the rate of overdose deaths involving opioids (opioid pain relievers and heroin). Source: CDC
In-the-News
:
- STAT: 26 overdoses in just hours: Inside a community on the front lines of the opioid epidemic
- NPR: Organ Donations Spike In The Wake Of The Opioid Epidemic, Deadly Opioid Overwhelms First Responders And Crime Labs in Ohio
- Scientific American: Wave of Overdoses with Little-Known Drug Raises Alarm Amid Opioid Crisis
- Washington Post: A 7-year-old told her bus driver she couldn’t wake her parents. Police found them dead at home.
- Wall Street Journal: For Small-Town Cops, Opioid Scourge Hits Close to Home
- Food & Drug Administration: FDA launches competition to spur innovative technologies to help reduce opioid overdose deaths
This data was compiled using the CDC's WONDER database. Opioid overdose deaths are defined as: deaths in which the underlying cause was drug overdose, and the ICD-10 code used was any of the following: T40.0 (Opium), T40.1 (Heroin), T40.2 (Other opioids), T40.3 (Methadone), T40.4 (Other synthetic narcotics), T40.6 (Other and unspecified narcotics).
Age-adjusted rate of drug overdose deaths and drug overdose deaths involving opioids
http://i.imgur.com/ObpzUKq.gif" alt="Opioid Death Rate" style="">
Source: CDCWhat are opioids?
Opioids are substances that act on opioid receptors to produce morphine-like effects. Opioids are most often used medically to relieve pain. Opioids include opiates, an older term that refers to such drugs derived from opium, including morphine itself. Other opioids are semi-synthetic and synthetic drugs such as hydrocodone, oxycodone and fentanyl; antagonist drugs such as naloxone and endogenous peptides such as the endorphins.[4] The terms opiate and narcotic are sometimes encountered as synonyms for opioid. Source: Wikipedia
contributors-wanted
See comment in DiscussionFootnotes
- The crude rate is per 100,000.
- Certain totals are hidden due to suppression constraints. More Information: http://wonder.cdc.gov/wonder/help/faq.html#Privacy.
- The population figures are briged-race estimates. The exceptions being years 2000 and 2010, in which Census counts are used.
- v1.1: Added Opioid Prescriptions Dispensed by US Retailers in that year (millions).
Citation: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2014 on CDC WONDER Online Database, released 2015. Data are from the Multiple Cause of Death Files, 1999-2014, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/mcd-icd10.html on Oct 19, 2016 2:06:38 PM.
Citation for Opioid Prescription Data: IMS Health, Vector One: National, years 1991-1996, Data Extracted 2011. IMS Health, National Prescription Audit, years 1997-2013, Data Extracted 2014. Accessed at NIDA article linked (Figure 1) on Oct 23, 2016.
Data Use Restrictions:
The Public Health Service Act (42 U.S.C. 242m(d)) provides that the data collected by the National Center for Health Statistics (NCHS) may be used only for the purpose for which they were obtained; any effort to determine the identity of any reported cases, or to use the information for any purpose other than for health statistical reporting and analysis, is against the law. Therefore users will:
Use these data for health statistical reporting and analysis only.
For sub-national geography, do not present or publish death counts of 9 or fewer or death rates based on counts of nine or fewer (in figures, graphs, maps, tables, etc.).
Make no attempt to learn the identity of any person or establishment included in these data.
Make no disclosure or other use of the identity of any person or establishment discovered inadvertently and advise the NCHS Confidentiality Officer of any such discovery.
Eve Powell-Griner, Confidentiality Officer
National Center for Health Statistics
3311 Toledo Road, Rm 7116
Hyattsville, MD 20782
Telephone 301-458-4257 Fax 301-458-4021This dataset was created by Health and contains around 800 samples along with Crude Rate, Crude Rate Lower 95% Confidence Interval, technical information and other features such as: - Year - Deaths - and more.
- Analyze Crude Rate Upper 95% Confidence Interval in relation to Prescriptions Dispensed By Us Retailers In That Year (millions)
- Study the influence of State on Crude Rate
- More datasets
If you use this dataset in your research, please credit Health
--- Original source retains full ownership of the source dataset ---
Since 1930, the Federal Bureau of Investigation has compiled the Uniform Crime Reports (UCR) to serve as a periodic nationwide assessment of reported crimes not available elsewhere in the criminal justice system. Each year, this information is reported in four types of files: (1) Offenses Known and Clearances by Arrest, (2) Property Stolen and Recovered, (3) Supplementary Homicide Reports (SHR), and (4) Police Employee (LEOKA) Data. The Police Employee (LEOKA) Data provide information about law enforcement officers killed or assaulted (hence the acronym, LEOKA) in the line of duty. The variables created from the LEOKA forms provide in-depth information on the circumstances surrounding killings or assaults, including type of call answered, type of weapon used, and type of patrol the officers were on.
List of every shooting incident that occurred in NYC during the current calendar year. This is a breakdown of every shooting incident that occurred in NYC during the current calendar year. This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence. In addition, information related to suspect and victim demographics is also included. This data can be used by the public to explore the nature of police enforcement activity. Please refer to the attached data footnotes for additional information about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data serves two primary purposes: (1) to report the number of employees in each law enforcement agency, categorized by sworn officers and civilian employees, as well as by sex; and (2) to track the number of officers assaulted or killed each month. Employee counts are reported annually, providing agency-level totals without intra-year fluctuations. Assault data includes details on shift type (e.g., alone, with a partner, on foot, in a vehicle), the offender’s weapon, and the type of call (e.g., robbery, disturbance, traffic stop). Fatality data distinguishes between felonious deaths (i.e., murders) and accidental deaths.
This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.
This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.
The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.
How does this dataset classify victims?
The methodology by which this dataset classifies victims of violent crime differs by victimization type:
Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.
To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.
For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:
Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:
Note: All businesses identified as victims in CPD data have been removed from this dataset.
Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”
Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
This dataset contains individual-level homicide and non-fatal shooting victimizations, including homicide data from 1991 to the present, and non-fatal shooting data from 2010 to the present (2010 is the earliest available year for shooting data). This dataset includes a "GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized-access dataset, but with "UNKNOWN" in the shooting column.
Each row represents a single victimization, i.e., a unique event when an individual became the victim of a homicide or non-fatal shooting. Each row does not represent a unique victim—if someone is victimized multiple times there will be multiple rows for each of those distinct events.
The dataset is refreshed daily, but excludes the most recent complete day to allow the Chicago Police Department (CPD) time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.
A version of this dataset with additional crime types is available by request. To make a request, please email dataportal@cityofchicago.org with the subject line: Violence Reduction Victims Access Request. Access will require an account on this site, which you may create at https://data.cityofchicago.org/signup.
How does this dataset classify victims?
The methodology by which this dataset classifies victims of violent crime differs by victimization type:
Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.
To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset. For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:
Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:
Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.” Officer-involved shootings are not included.
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
Note: In some instances, CPD's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most reliable crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).
Note: Homicide victims names are delayed by two weeks to allow time for the victim’s family to be notified of their passing.
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
Note: This dataset includes variables referencing administrative or political boundaries that are subject to change. These include Street Outreach Organization boundary, Ward, Chicago Police Department District, Chicago Police Department Area, Chicago Police Department Beat, Illinois State Senate District, and Illinois State House of Representatives District. These variables reflect current geographic boundaries as of November 1st, 2021. In some instances, current boundaries may conflict with those that were in place at the time that a given incident occurred in prior years. For example, the Chicago Police Department districts 021 and 013 no longer exist. Any historical violent crime victimization that occurred in those districts when they were in existence are marked in this dataset as having occurred in the current districts that expanded to replace 013 and 021."
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Approximately 10 people are shot on an average day in Chicago.
http://www.chicagotribune.com/news/data/ct-shooting-victims-map-charts-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-chicago-homicides-data-tracker-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-homicide-victims-2017-htmlstory.html
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. This data includes unverified reports supplied to the Police Department. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time.
Update Frequency: Daily
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:chicago_crime
https://cloud.google.com/bigquery/public-data/chicago-crime-data
Dataset Source: City of Chicago
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source —https://data.cityofchicago.org — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Ferdinand Stohr from Unplash.
What categories of crime exhibited the greatest year-over-year increase between 2015 and 2016?
Which month generally has the greatest number of motor vehicle thefts?
How does temperature affect the incident rate of violent crime (assault or battery)?
https://cloud.google.com/bigquery/images/chicago-scatter.png" alt="">
https://cloud.google.com/bigquery/images/chicago-scatter.png
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
These statistics provide details of the deaths reported on by the IPCC in each financial year, and also present figures on those suicides following release from police custody which were reported to the IPCC. Data can be updated annually, so please use the trend figures from the latest report.
The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.