66 datasets found
  1. Police Killings US

    • kaggle.com
    zip
    Updated Feb 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Connor (2022). Police Killings US [Dataset]. https://www.kaggle.com/datasets/azizozmen/police-killings-us
    Explore at:
    zip(62816 bytes)Available download formats
    Dataset updated
    Feb 6, 2022
    Authors
    Matthew Connor
    Description

    "In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article

    For more information about this story

    This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

    2016 PoliceKillingUS DATASET
    2017 PoliceKillingUS DATASET
    2018 PoliceKillingUS DATASET
    2019 PoliceKillingUS DATASET
    2020 PoliceKillingUS DATASET

    Features at the Dataset:

    The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:

    • id: a unique identifier for each victim
    • name: the name of the victim
    • date: the date of the fatal shooting in YYYY-MM-DD format
    • manner_of_death: shot, shot and Tasered
    • armed: indicates that the victim was armed with some sort of implement that a police officer believed could inflict harm
      • undetermined: it is not known whether or not the victim had a weapon
      • unknown: the victim was armed, but it is not known what the object was
      • unarmed: the victim was not armed
    • age: the age of the victim
    • gender: the gender of the victim. The Post identifies victims by the gender they identify with if reports indicate that it differs from their biological sex.
      • M: Male
      • F: Female
      • None: unknown
    • race:
      • W: White, non-Hispanic
      • B: Black, non-Hispanic
      • A: Asian
      • N: Native American
      • H: Hispanic
      • O: Other
      • None: unknown
    • city: the municipality where the fatal shooting took place. Note that in some cases this field may contain a county name if a more specific municipality is unavailable or unknown.
    • state: two-letter postal code abbreviation
    • signs of mental illness: News reports have indicated the victim had a history of mental health issues, expressed suicidal intentions or was experiencing mental distress at the time of the shooting.
    • threat_level: The threat_level column was used to flag incidents for the story by Amy Brittain in October 2015. http://www.washingtonpost.com/sf/investigative/2015/10/24/on-duty-under-fire/ As described in the story, the general criteria for the attack label was that there was the most direct and immediate threat to life. That would include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The other and undetermined categories represent all remaining cases. Other includes many incidents where officers or others faced significant threats.
    • flee: News reports have indicated the victim was moving away from officers
      • Foot
      • Car
      • Not fleeing

    The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer w...

  2. Dataset on US police killings 2013-2024

    • kaggle.com
    zip
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lord Voldemort (2024). Dataset on US police killings 2013-2024 [Dataset]. https://www.kaggle.com/datasets/lordvoldemortt/dataset-on-us-police-killings-2013-2024
    Explore at:
    zip(8405081 bytes)Available download formats
    Dataset updated
    May 14, 2024
    Authors
    Lord Voldemort
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    This data was obtained from https://mappingpoliceviolence.us/.

    Mapping Police Violence is a 501(c)(3) organization that publishes the most comprehensive and up-to-date data on police violence in America to support transformative change.

    This is a database set on openly sharing information on police violence in America.

    Some information on this data according to their website: Our data has been meticulously sourced from official police use of force data collection programs in states like California, Texas and Virginia, combined with nationwide data from The Gun Violence Archive and the Fatal Encounters database, two impartial crowdsourced databases. We've also done extensive original research to further improve the quality and completeness of the data; searching social media, obituaries, criminal records databases, police reports and other sources to identify the race of 90 percent of all victims in the database.

    We believe the data represented on this site is the most comprehensive accounting of people killed by police since 2013. Note that the Mapping Police Violence database is more comprehensive than the Washington Post police shootings database: while WaPo only tracks cases where people are fatally shot by on-duty police officers, our database includes additional incidents such as cases where police kill someone through use of a chokehold, baton, taser or other means as well as cases such as killings by off-duty police. A recent report from the Bureau of Justice Statistics estimated approximately 1,200 people were killed by police between June, 2015 and May, 2016. Our database identified 1,100 people killed by police over this time period. While there are undoubtedly police killings that are not included in our database (namely, those that go unreported by the media), these estimates suggest that our database captures 92% of the total number of police killings that have occurred since 2013. We hope these data will be used to provide greater transparency and accountability for police departments as part of the ongoing work to end police violence in America.

  3. d

    Law Enforcement Facilities

    • catalog.data.gov
    • data.oregon.gov
    • +1more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2025). Law Enforcement Facilities [Dataset]. https://catalog.data.gov/dataset/law-enforcement-facilities
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    State of Oregon
    Description

    Law Enforcement Locations Any location where sworn officers of a law enforcement agency are regularly based or stationed. Law Enforcement agencies "are publicly funded and employ at least one full-time or part-time sworn officer with general arrest powers". This is the definition used by the US Department of Justice - Bureau of Justice Statistics (DOJ-BJS) for their Law Enforcement Management and Administrative Statistics (LEMAS) survey. Although LEMAS only includes non Federal Agencies, this dataset includes locations for federal, state, local, and special jurisdiction law enforcement agencies. Law enforcement agencies include, but are not limited to, municipal police, county sheriffs, state police, school police, park police, railroad police, federal law enforcement agencies, departments within non law enforcement federal agencies charged with law enforcement (e.g., US Postal Inspectors), and cross jurisdictional authorities (e.g., Port Authority Police). In general, the requirements and training for becoming a sworn law enforcement officer are set by each state. Law Enforcement agencies themselves are not chartered or licensed by their state. County, city, and other government authorities within each state are usually empowered by their state law to setup or disband Law Enforcement agencies. Generally, sworn Law Enforcement officers must report which agency they are employed by to the state. Although TGS's intention is to only include locations associated with agencies that meet the above definition, TGS has discovered a few locations that are associated with agencies that are not publicly funded. TGS deleted these locations as we became aware of them, but some may still exist in this dataset. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes of constables are included due to the fact that many constables work out of their homes. TGS has made a concerted effort to include all local police; county sheriffs; state police and/or highway patrol; Bureau of Indian Affairs; Bureau of Land Management; Bureau of Reclamation; U.S. Park Police; Bureau of Alcohol, Tobacco, Firearms, and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. FBI entities are intended to be excluded from this dataset, but a few may be included. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, the NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by single spaces in these same fields. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been

  4. Data from: Police Departments, Arrests and Crime in the United States,...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Police Departments, Arrests and Crime in the United States, 1860-1920 [Dataset]. https://catalog.data.gov/dataset/police-departments-arrests-and-crime-in-the-united-states-1860-1920-476a7
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Area covered
    United States
    Description

    These data on 19th- and early 20th-century police department and arrest behavior were collected between 1975 and 1978 for a study of police and crime in the United States. Raw and aggregated time-series data are presented in Parts 1 and 3 on 23 American cities for most years during the period 1860-1920. The data were drawn from annual reports of police departments found in the Library of Congress or in newspapers and legislative reports located elsewhere. Variables in Part 1, for which the city is the unit of analysis, include arrests for drunkenness, conditional offenses and homicides, persons dismissed or held, police personnel, and population. Part 3 aggregates the data by year and reports some of these variables on a per capita basis, using a linear interpolation from the last decennial census to estimate population. Part 2 contains data for 267 United States cities for the period 1880-1890 and was generated from the 1880 federal census volume, REPORT ON THE DEFECTIVE, DEPENDENT, AND DELINQUENT CLASSES, published in 1888, and from the 1890 federal census volume, SOCIAL STATISTICS OF CITIES. Information includes police personnel and expenditures, arrests, persons held overnight, trains entering town, and population.

  5. u

    HSIP Law Enforcement Locations in New Mexico

    • gstore.unm.edu
    • catalog.data.gov
    Updated Feb 4, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). HSIP Law Enforcement Locations in New Mexico [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/faeb3a73-8c0d-40f2-9d69-6075aa1e108e/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Feb 4, 2010
    Time period covered
    Aug 14, 2006
    Area covered
    New Mexico, West Bound -108.84618475534 East Bound -103.049692021254 North Bound 36.9348613580651 South Bound 31.7845116518986
    Description

    Law Enforcement Locations Any location where sworn officers of a law enforcement agency are regularly based or stationed. Law Enforcement agencies "are publicly funded and employ at least one full-time or part-time sworn officer with general arrest powers". This is the definition used by the US Department of Justice - Bureau of Justice Statistics (DOJ-BJS) for their Law Enforcement Management and Administrative Statistics (LEMAS) survey. Although LEMAS only includes non Federal Agencies, this dataset includes locations for federal, state, local, and special jurisdiction law enforcement agencies. Law enforcement agencies include, but are not limited to, municipal police, county sheriffs, state police, school police, park police, railroad police, federal law enforcement agencies, departments within non law enforcement federal agencies charged with law enforcement (e.g., US Postal Inspectors), and cross jurisdictional authorities (e.g., Port Authority Police). In general, the requirements and training for becoming a sworn law enforcement officer are set by each state. Law Enforcement agencies themselves are not chartered or licensed by their state. County, city, and other government authorities within each state are usually empowered by their state law to setup or disband Law Enforcement agencies. Generally, sworn Law Enforcement officers must report which agency they are employed by to the state. Although TGS's intention is to only include locations associated with agencies that meet the above definition, TGS has discovered a few locations that are associated with agencies that are not publicly funded. TGS deleted these locations as we became aware of them, but some may still exist in this dataset. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes are included due to the fact that the New Mexico Mounted Police work out of their homes. TGS has made a concerted effort to include all local police; county sheriffs; state police and/or highway patrol; Bureau of Indian Affairs; Bureau of Land Management; Bureau of Reclamation; U.S. Park Police; Bureau of Alcohol, Tobacco, Firearms, and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. FBI entities are intended to be excluded from this dataset, but a few may be included. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, the NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by single spaces in these same fields. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on the values in this field, the oldest record dates from 08/14/2006 and the newest record dates from 10/23/2009

  6. Police deaths in USA from 1791 to 2022

    • kaggle.com
    zip
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayuresh Koli (2022). Police deaths in USA from 1791 to 2022 [Dataset]. https://www.kaggle.com/datasets/mayureshkoli/police-deaths-in-usa-from-1791-to-2022
    Explore at:
    zip(5762743 bytes)Available download formats
    Dataset updated
    Dec 7, 2022
    Authors
    Mayuresh Koli
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    This dataset contains information on fatal police deaths in the United States. The data includes the victim's rank, name, department, date of death, and cause of death. The data spans from 1791 to the present day. This dataset will be updated on monthly basis. Data Scrapped from this website :- https://www.odmp.org/

    New Version Features -> With the new web scrapper I have upgraded dataset with more information. 1) The new dataset version is "police_deaths_USA_v6.csv" and "k9_deaths_USA_v6.csv". 2) Splitted the dataset into 2 different datasets 1 for Human Unit and other for K9 Unit. 3) Check out the new web scrapper code in this file "final_scrapper_program_with_comments.ipynb". 4) Also added the correction file which is needed to adjust some data points from K9 dataset. 5) Extended data of Human Unit dataset to 13 Features. 6) Extended data of K9 Unit dataset to 14 Features.

    The police_deaths dataset contains 13 variables:

    1) Rank -> Rank assigned or achieved by the police throughout their tenure.

    2) Name -> The name of the person.

    3) Age -> Age of the person.

    4) End_Of_Watch -> The death date on which the the person declared as dead.

    5) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].

    6) Cause -> The cause of the death.

    7) Department -> The department's name where the person works.

    8) State -> The state where the department is situated.

    9) Tour -> The Duration of there Tenure.

    10) Badge -> Badge of the person.

    11) Weapon -> The Weapon by which the officer has been killed.

    12) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].

    13) Summary -> Summary of the police officer and also the summary of the incident of what happened ? How he/she died ?, etc.

    The k9_deaths dataset contains 14 variables:

    1) Rank -> Rank assigned or achieved by the K9 throughout their tenure.

    2) Name -> The name of the K9.

    3) Breed -> Breed of the K9.

    4) Gender -> Gender of the K9.

    5) Age -> Age of the K9.

    6) End_Of_Watch -> The death date on which the the person declared as dead.

    7) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].

    8) Cause -> The cause of the death.

    9) Department -> The department's name where the K9 was assigned.

    10) State -> The state where the department is situated.

    11) Tour -> The Duration of there Tenure.

    12) Weapon -> The Weapon by which the officer has been killed.

    13) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].

    14) Summary -> Summary of the K9 dog and also the summary of the incident of what happened ? How he/she died ?, etc.

    Acknowledgements:

    The original dataset was collected by FiveThirtyEight and it contains police death data from 1791 to 2016. Here is the link -> https://data.world/fivethirtyeight/police-deaths.

    The reason I made this dataset is because it had not been updated since 2016 and the scrapping script was outdated, so I decided to make a new scrapper and update the dataset till present. I got this idea from the FiveThirtyEight group and a fellow kaggler, Satoshi Datamoto, who uploaded the dataset on kaggle. Thank you for inspiration.

    Tableau Visualization link :- https://public.tableau.com/app/profile/mayuresh.koli/viz/USALawEnforcementLineofDutyDeaths/main_dashboard

  7. Data from: Felonious Homicides of American Police Officers, 1977-1992

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Felonious Homicides of American Police Officers, 1977-1992 [Dataset]. https://catalog.data.gov/dataset/felonious-homicides-of-american-police-officers-1977-1992-25657
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Description

    The study was a comprehensive analysis of felonious killings of officers. The purposes of the study were (1) to analyze the nature and circumstances of incidents of felonious police killings and (2) to analyze trends in the numbers and rates of killings across different types of agencies and to explain these differences. For Part 1, Incident-Level Data, an incident-level database was created to capture all incidents involving the death of a police officer from 1983 through 1992. Data on officers and incidents were collected from the Law Enforcement Officers Killed and Assaulted (LEOKA) data collection as coded by the Uniform Crime Reporting (UCR) program. In addition to the UCR data, the Police Foundation also coded information from the LEOKA narratives that are not part of the computerized LEOKA database from the FBI. For Part 2, Agency-Level Data, the researchers created an agency-level database to research systematic differences among rates at which law enforcement officers had been feloniously killed from 1977 through 1992. The investigators focused on the 56 largest law enforcement agencies because of the availability of data for explanatory variables. Variables in Part 1 include year of killing, involvement of other officers, if the officer was killed with his/her own weapon, circumstances of the killing, location of fatal wounds, distance between officer and offender, if the victim was wearing body armor, if different officers were killed in the same incident, if the officer was in uniform, actions of the killer and of the officer at entry and final stage, if the killer was visible at first, if the officer thought the killer was a felon suspect, if the officer was shot at entry, and circumstances at anticipation, entry, and final stages. Demographic variables for Part 1 include victim's sex, age, race, type of assignment, rank, years of experience, agency, population group, and if the officer was working a security job. Part 2 contains variables describing the general municipal environment, such as whether the agency is located in the South, level of poverty according to a poverty index, population density, percent of population that was Hispanic or Black, and population aged 15-34 years old. Variables capturing the crime environment include the violent crime rate, property crime rate, and a gun-related crime index. Lastly, variables on the environment of the police agencies include violent and property crime arrests per 1,000 sworn officers, percentage of officers injured in assaults, and number of sworn officers.

  8. Multi-Method Evaluation of Police Use of Force Outcomes: Cities, Counties,...

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, delimited, sas +2
    Updated Apr 28, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alpert, Geoffrey P.; Smith, Michael R.; Fridell, Lorie A. (2011). Multi-Method Evaluation of Police Use of Force Outcomes: Cities, Counties, and National, 1998-2007 [United States] [Dataset]. http://doi.org/10.3886/ICPSR25781.v1
    Explore at:
    delimited, spss, sas, ascii, stataAvailable download formats
    Dataset updated
    Apr 28, 2011
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Alpert, Geoffrey P.; Smith, Michael R.; Fridell, Lorie A.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/25781/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/25781/terms

    Area covered
    South Carolina, Orlando, Florida, Austin, Washington, Texas, Seattle, United States
    Description

    The purpose of the study was to investigate how and why injuries occur to police and citizens during use of force events. The research team conducted a national survey (Part 1) of a stratified random sample of United States law enforcement agencies regarding the deployment of, policies for, and training with less lethal technologies. Finalized surveys were mailed in July 2006 to 950 law enforcement agencies, and a total of 518 law enforcement agencies provided information on less lethal force generally and on their deployment and policies regarding conducted energy devices (CEDs) in particular. A total of 292 variables are included in the National Use of Force Survey Data (Part 1) including items about weapons deployment, force policies, training, force reporting/review, force incidents and outcomes, and conducted energy devices (CEDs). Researchers also collected agency-supplied use of force data from law enforcement agencies in Richland County, South Carolina; Miami-Dade, Florida; and Seattle, Washington; to identify individual and situational predictors of injuries to officers and citizens during use of force events. The Richland County, South Carolina Data (Part 2) include 441 use-of-force reports from January 2005 through July 2006. Part 2 contains 17 variables including whether the officer or suspect was injured, 8 measures of officer force, 3 measures of suspect resistance, the number of witnesses and officers present at each incident, and the number of suspects that resisted or assaulted officers for each incident. The Miami-Dade County, Florida Data (Part 3) consist of 762 use-of-force incidents that occurred between January 2002 and May 2006. Part 3 contains 15 variables, including 4 measures of officer force, the most serious resistance on the part of the suspect, whether the officer or suspect was injured, whether the suspect was impaired by drugs or alcohol, the officer's length of service in years, and several demographic variables pertaining to the suspect and officer. The Seattle, Washington Data (Part 4) consist of 676 use-of-force incidents that occurred between December 1, 2005, as 15 variables, including 3 measures of officer force, whether the suspect or officer was injured, whether the suspect was impaired by drugs or alcohol, whether the suspect used, or threatened to use, physical force against the officer(s), and several demographic variables relating to the suspect and officer(s). The researchers obtained use of force survey data from several large departments representing different types of law enforcement agencies (municipal, county, sheriff's department) in different states. The research team combined use of force data from multiple agencies into a single dataset. This Multiagency Use of Force Data (Part 5) includes 24,928 use-of-force incidents obtained from 12 law enforcement agencies from 1998 through 2007. Part 5 consists a total of 21 variables, including the year the incident took place, demographic variables relating to the suspect, the type of force used by the officer, whether the suspect or officer was injured, and 5 measures of the department's policy regarding the use of CEDs and pepper spray. Lastly, longitudinal data were also collected for the Orlando, Florida and Austin, Texas police departments. The Orlando, Florida Longitudinal Data (Part 6) comprise 4,222 use-of-force incidents aggregated to 108 months -- a 9 year period from 1998 through 2006. Finally, the Austin, Texas Longitudinal Data (Part 7) include 6,596 force incidents aggregated over 60 months- a 5 year period from 2002 through 2006. Part 6 and Part 7 are comprised of seven variables documenting whether a Taser was implemented, the number of suspects and officers injured in a month, the number of force incidents per month, and the number of CEDs uses per month.

  9. People shot to death by U.S. police 2017-2024, by race

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, People shot to death by U.S. police 2017-2024, by race [Dataset]. https://www.statista.com/statistics/585152/people-shot-to-death-by-us-police-by-race/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Sadly, the trend of fatal police shootings in the United States seems to only be increasing, with a total 1,173 civilians having been shot, 248 of whom were Black, as of December 2024. In 2023, there were 1,164 fatal police shootings. Additionally, the rate of fatal police shootings among Black Americans was much higher than that for any other ethnicity, standing at 6.1 fatal shootings per million of the population per year between 2015 and 2024. Police brutality in the U.S. In recent years, particularly since the fatal shooting of Michael Brown in Ferguson, Missouri in 2014, police brutality has become a hot button issue in the United States. The number of homicides committed by police in the United States is often compared to those in countries such as England, where the number is significantly lower. Black Lives Matter The Black Lives Matter Movement, formed in 2013, has been a vocal part of the movement against police brutality in the U.S. by organizing “die-ins”, marches, and demonstrations in response to the killings of black men and women by police. While Black Lives Matter has become a controversial movement within the U.S., it has brought more attention to the number and frequency of police shootings of civilians.

  10. Data from: Survey of Police Chiefs' and Data Analysts' Use of Data in Police...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Survey of Police Chiefs' and Data Analysts' Use of Data in Police Departments in the United States, 2004 [Dataset]. https://catalog.data.gov/dataset/survey-of-police-chiefs-and-data-analysts-use-of-data-in-police-departments-in-the-united--2fcbd
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    This study surveyed police chiefs and data analysts in order to determine the use of data in police departments. The surveys were sent to 1,379 police agencies serving populations of at least 25,000. The survey sample for this study was selected from the 2000 Law Enforcement Management and Administrative Statistics (LEMAS) survey. All police agencies serving populations of at least 25,000 were selected from the LEMAS database for inclusion. Separate surveys were sent for completion by police chiefs and data analysts. Surveys were used to gather information on data sharing and integration efforts to identify the needs and capacities for data usage in local law enforcement agencies. The police chief surveys focused on five main areas of interest: use of data, personnel response to data collection, the collection and reporting of incident-based data, sharing data, and the providing of statistics to the community and media. Like the police chief surveys, the data analyst surveys focused on five main areas of interest: use of data, agency structures and resources, data for strategies, data sharing and outside assistance, and incident-based data. The final total of police chief surveys included in the study is 790, while 752 data analyst responses are included.

  11. Data from: Study of Sworn Nonfederal Law Enforcement Officers Arrested in...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Study of Sworn Nonfederal Law Enforcement Officers Arrested in the United States, 2005-2011 [Dataset]. https://catalog.data.gov/dataset/study-of-sworn-nonfederal-law-enforcement-officers-arrested-in-the-united-states-2005-2011-65a5b
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed expect for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) is further information is needed. This collection is composed of archived news articles and court records reporting (n=6,724) on the arrest(s) of law enforcement officers in the United States from 2005-2011. Police crimes are those crimes committed by sworn law enforcement officers given the general powers of arrest at the time the offense was committed. These crimes can occur while the officer is on or off duty and include offenses committed by state, county, municipal, tribal, or special law enforcement agencies.Three distinct but related research questions are addressed in this collection:What is the incidence and prevalence of police officers arrested across the United States? How do law enforcement agencies discipline officers who are arrested?To what degree do police crime arrests correlate with other forms of police misconduct?

  12. FiveThirtyEight Police Locals Dataset

    • kaggle.com
    zip
    Updated Mar 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Police Locals Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-police-locals-dataset
    Explore at:
    zip(3728 bytes)Available download formats
    Dataset updated
    Mar 26, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Police Residence

    This folder contains data behind the story Most Police Don’t Live In The Cities They Serve.

    Includes the cities with the 75 largest police forces, with the exception of Honolulu for which data is not available. All calculations are based on data from the U.S. Census.

    The Census Bureau numbers are potentially going to differ from other counts for three reasons:

    1. The census category for police officers also includes sheriffs, transit police and others who might not be under the same jurisdiction as a city’s police department proper. The census category won’t include private security officers.
    2. The census data is estimated from 2006 to 2010; police forces may have changed in size since then.
    3. There is always a margin of error in census numbers; they are estimates, not complete counts.

    How to read police-locals.csv

    HeaderDefinition
    cityU.S. city
    police_force_sizeNumber of police officers serving that city
    allPercentage of the total police force that lives in the city
    whitePercentage of white (non-Hispanic) police officers who live in the city
    non-whitePercentage of non-white police officers who live in the city
    blackPercentage of black police officers who live in the city
    hispanicPercentage of Hispanic police officers who live in the city
    asianPercentage of Asian police officers who live in the city

    Note: When a cell contains ** it means that there are fewer than 100 police officers of that race serving that city.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  13. Sworn Law Enforcement Officer Locations

    • gis-calema.opendata.arcgis.com
    • hub.arcgis.com
    Updated May 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2019). Sworn Law Enforcement Officer Locations [Dataset]. https://gis-calema.opendata.arcgis.com/datasets/sworn-law-enforcement-officer-locations
    Explore at:
    Dataset updated
    May 23, 2019
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    Description

    Feature layer showing the locations of Sworn Law Enforcement Officer Locations in California.This is the definition used by the US Department of Justice - Bureau of Justice Statistics (DOJ-BJS) for their Law Enforcement Management and Administrative Statistics (LEMAS) survey. Although LEMAS only includes non Federal Agencies, this dataset includes locations for federal, state, local, and special jurisdiction law enforcement agencies. Law enforcement agencies include, but are not limited to, municipal police, county sheriffs, state police, school police, park police, railroad police, federal law enforcement agencies, departments within non law enforcement federal agencies charged with law enforcement (e.g., US Postal Inspectors), and cross jurisdictional authorities (e.g., Port Authority Police). In general, the requirements and training for becoming a sworn law enforcement officer are set by each state. Law Enforcement agencies themselves are not chartered or licensed by their state. County, city, and other government authorities within each state are usually empowered by their state law to setup or disband Law Enforcement agencies. Generally, sworn Law Enforcement officers must report which agency they are employed by to the state. Although TGS's intention is to only include locations associated with agencies that meet the above definition, TGS has discovered a few locations that are associated with agencies that are not publicly funded. TGS deleted these locations as we became aware of them, but some may still exist in this dataset. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes of constables are included due to the fact that many constables work out of their homes. This also applies to mounted police in New Mexico. TGS has made a concerted effort to include all local police; county sheriffs; state police and/or highway patrol; Bureau of Indian Affairs; Bureau of Land Management; Bureau of Reclamation; U.S. Park Police; Bureau of Alcohol, Tobacco, Firearms, and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection in the United States and its territories. This dataset is comprised completely of license free data. At the request of NGA, FBI entities are intended to be excluded from this dataset, but a few may be included. The HSIP Freedom Law Enforcement dataset and the HSIP Freedom Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. Please see the process description for the breakdown of how the records were merged. With the merge of the Law Enforcement and the Correctional Institutions datasets, the HSIP Themes and NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard HSIP fields that TGS populated. Double spaces were replaced by single spaces in these same fields. At the request of NGA, text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. At the request of NGA, all diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on the values in this field, the oldest record dates from 12/07/2004 and the newest record dates from 09/10/2009.Use Cases: Use cases describe how the data may be used and help to define and clarify requirements.1. An assessment of whether or not the total police capability in a given area is adequate. 2. A list of resources to draw upon in surrounding areas when local resources have temporarily been overwhelmed by a disaster - route analysis can help to determine those entities who are able to respond the quickest. 3. A resource for emergency management planning purposes. 4. A resource for catastrophe response to aid in the retrieval of equipment by outside responders in order to deal with the disaster. 5. A resource for situational awareness planning and response for federal government events.

  14. Police-Public Contact Survey, 1999: [United States]

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, sas, spss
    Updated Jun 18, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics (2001). Police-Public Contact Survey, 1999: [United States] [Dataset]. http://doi.org/10.3886/ICPSR03151.v2
    Explore at:
    ascii, spss, sasAvailable download formats
    Dataset updated
    Jun 18, 2001
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3151/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3151/terms

    Time period covered
    1999
    Area covered
    United States
    Description

    This survey was undertaken to learn more about how often and under what circumstances police-public contact becomes problematic. The Bureau of Justice Statistics (BJS) initiated surveys of the public on their interactions with police in 1996 with the first Police-Public Contact Survey, a pretest among a nationally representative sample of 6,421 persons aged 12 or older. That initial version of the questionnaire revealed that about 20 percent of the public had direct, face-to-face contact with a police officer at least once during the year preceding the survey. At that time, the principal investigator estimated that about 1 in 500 residents, or about a half million people, who had an encounter with a police officer also experienced either a threat of force or the actual use of force by the officer. The current survey, an improved version of the 1996 Police-Public Contact Survey, was fielded as a supplement to the National Crime Victimization Survey (ICPSR 6406) during the last six months of 1999. A national sample nearly 15 times as large as the pretest sample in 1996 was used. The 1999 survey yielded nearly identical estimates of the prevalence and nature of contacts between the public and the police. This survey, because of its much larger sample size, permits more extensive analysis of demographic differences in police contacts than the 1996 pretest. In addition, it added a new and more detailed set of questions about traffic stops by police, the most frequent reason given for contact with police. Variables in the dataset cover type of contact with police, including whether it was face-to-face, initiated by the police or the citizen, whether an injury to the officer or the citizen resulted from the contact, crimes reported, and police use of force. Demographic variables supplied for the citizens include gender, race, and Hispanic origin.

  15. a

    New Hampshire Law Enforcement

    • hub.arcgis.com
    • nhgeodata.unh.edu
    • +1more
    Updated Dec 30, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2009). New Hampshire Law Enforcement [Dataset]. https://hub.arcgis.com/datasets/NHGRANIT::new-hampshire-law-enforcement/geoservice
    Explore at:
    Dataset updated
    Dec 30, 2009
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    Law Enforcement Locations Any location where sworn officers of a law enforcement agency are regularly based or stationed. Law Enforcement agencies "are publicly funded and employ at least one full-time or part-time sworn officer with general arrest powers". This is the definition used by the US Department of Justice - Bureau of Justice Statistics (DOJ-BJS) for their Law Enforcement Management and Administrative Statistics (LEMAS) survey. Although LEMAS only includes non Federal Agencies, this dataset includes locations for federal, state, local, and special jurisdiction law enforcement agencies. Law enforcement agencies include, but are not limited to, municipal police, county sheriffs, state police, school police, park police, railroad police, federal law enforcement agencies, departments within non law enforcement federal agencies charged with law enforcement (e.g., US Postal Inspectors), and cross jurisdictional authorities (e.g., Port Authority Police). In general, the requirements and training for becoming a sworn law enforcement officer are set by each state. Law Enforcement agencies themselves are not chartered or licensed by their state. County, city, and other government authorities within each state are usually empowered by their state law to setup or disband Law Enforcement agencies. Generally, sworn Law Enforcement officers must report which agency they are employed by to the state. Although TGS's intention is to only include locations associated with agencies that meet the above definition, TGS has discovered a few locations that are associated with agencies that are not publicly funded. TGS deleted these locations as we became aware of them, but some may still exist in this dataset. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes of constables are included due to the fact that many constables work out of their homes. TGS has made a concerted effort to include all local police; county sheriffs; state police and/or highway patrol; Bureau of Indian Affairs; Bureau of Land Management; Bureau of Reclamation; U.S. Park Police; Bureau of Alcohol, Tobacco, Firearms, and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. FBI entities are intended to be excluded from this dataset, but a few may be included. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, the NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by single spaces in these same fields. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on the values in this field, the oldest record dates from 04/26/2006 and the newest record dates from 10/19/2009

  16. o

    Data and Code for: Who Watches the Watchmen? Local News and Police Behavior...

    • openicpsr.org
    delimited
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicola Mastrorocco; Arianna Ornaghi (2024). Data and Code for: Who Watches the Watchmen? Local News and Police Behavior in the United States [Dataset]. http://doi.org/10.3886/E202421V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    May 9, 2024
    Dataset provided by
    American Economic Association
    Authors
    Nicola Mastrorocco; Arianna Ornaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Dec 31, 2017
    Area covered
    United States
    Description

    Do U.S. municipal police departments respond to news coverage of local crime? We address this question exploiting an exogenous shock to local crime reporting induced by acquisitions of local TV stations by a large broadcast group, Sinclair. Using a unique dataset of 8.5 million news stories and a triple differences design, we document that Sinclair ownership decreases news coverage of local crime. This matters for policing: municipalities that experience the change in news coverage have lower violent crime clearance rates relative to municipalities that do not. The result is consistent with a decrease of crime salience in the public opinion.

  17. USA Big City Crime Data

    • kaggle.com
    zip
    Updated May 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MiddleHigh (2024). USA Big City Crime Data [Dataset]. https://www.kaggle.com/datasets/middlehigh/los-angeles-crime-data-from-2000
    Explore at:
    zip(526811245 bytes)Available download formats
    Dataset updated
    May 28, 2024
    Authors
    MiddleHigh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    This dataset contains different collected datasets with crime data of many large cities. Below are the descriptions for each seperate dataset. Note: Dataset properties and column may differ from each other since the information was collected by the local police in different styles and situations.

    1. Los Angeles

    The Los Angeles dataset has the collected data on different crimes that happened in Los Angeles from 2000 up until May 2024. The columns are as follows:

    • DR_NO - Division of Records Number: Official file number made up of a 2 digit year, area ID, and 5 digits

    • Date Rptd - The date when the police found out about the crime

    • Date OCC - The actual date of the crime

    • Time OCC - In military time

    • Area - The LAPD has 21 Community Police Stations referred to as Geographic Areas within the department. These Geographic Areas are sequentially numbered from 1-21.

    • Area Name - The 21 Geographic Areas or Patrol Divisions are also given a name designation that references a landmark or the surrounding community that it is responsible for. For example 77th Street Division is located at the intersection of South Broadway and 77th Street, serving neighborhoods in South Los Angeles.

    • Rpt Dist No - A four-digit code that represents a sub-area within a Geographic Area. All crime records reference the "RD" that it occurred in for statistical comparisons. Find LAPD Reporting Districts on the LA City GeoHub at http://geohub.lacity.org/datasets/c4f83909b81d4786aa8ba8a74a4b4db1_4

    • Crm Cd - Indicates the crime committed. (Same as Crime Code 1)

    • Crm Cd Desc - Defines the Crime Code provided.

    • Mocodes - Modus Operandi: Activities associated with the suspect in commission of the crime.

    • Vict Age - The age of the victim

    • Vict Sex - The gender of the victim. They are as follows:

      • M - Male
      • F - Female
      • X - Unknown
    • Vict Descent - Descent Code:

      • A - Other Asian
      • B - Black
      • C - Chinese
      • D - Cambodian
      • F - Filipino
      • G - Guamanian
      • H - Hispanic/Latin/Mexican
      • I - American Indian/Alaskan Native
      • J - Japanese
      • K - Korean
      • L - Laotian
      • O - Other
      • P - Pacific Islander
      • S - Samoan
      • U - Hawaiian
      • V - Vietnamese
      • W - White
      • X - Unknown
      • Z - Asian Indian
    • Premis Cd - The type of structure, vehicle, or location where the crime took place.

    • Premis Desc - Defines the Premise Code provided.

    • Weapon Used Cd - The type of weapon used in the crime.

    • Status - Status of the case. (IC is the default)

    • Status Desc - Defines the Status Code provided.

    • Crm Cd 1 - Indicates the crime committed. Crime Code 1 is the primary and most serious one. Crime Code 2, 3, and 4 are respectively less serious offenses. Lower crime class numbers are more serious.

    • Crm Cd 2 - May contain a code for an additional crime, less serious than Crime Code 1.

    • Crm Cd 3 - May contain a code for an additional crime, less serious than Crime Code 1.

    • Crm Cd 4 - May contain a code for an additional crime, less serious than Crime Code 1.

    • Location - Street address of crime incident rounded to the nearest hundred block to maintain anonymity.

    • Cross Street - Cross Street of rounded Address

    • LAT - Latitude

    • LON - Longitude

    This dataset has 28 columns and 944K rows. I hope you will find it useful. God bless you

    1. Chicago

    This dataset contains crime data on Chicago, from 2001 to present. The columns are as follows:

    • ID - Unique Identifier for the record

    • Case Number - The Chicago Police Department RD Number (Records Division Number), which is unique to the incident.

    • Date - Date when the incident occurred. this is sometimes a best estimate.

    • Block - The partially redacted address where the incident occurred, placing it on the same block as the actual address.

    • IUCR - The Illinois Unifrom Crime Reporting code. This is directly linked to the Primary Type and Description. See the list of IUCR codes at https://data.cityofchicago.org/d/c7ck-438e..

    • Primary Type - The primary description of the IUCR code.

    • Description - The secondary description of the IUCR code, a subcategory of the primary description.

    • Location Description - Description of the location where the incident occurred.

    • Arrest - Indicates whether an arrest was made.

    • Domestic - Indicates whether the incident was domestic-related as defined by the Illinois Domestic Violence Act.

    • Beat - Indicates the beat where the incident occurred. A beat is the smallest police geographic area – each beat has a dedicated police beat car. Three to five beats make up a police sector, and three sectors make up a police district. The Chicago Police Department has 22 police districts. See the beats at https://data.cityofchicago.org/d/aerh-rz74.

    • Distric...

  18. Police Stations

    • chicago.gov
    • data.cityofchicago.org
    • +3more
    csv, xlsx, xml
    Updated Jun 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2016). Police Stations [Dataset]. https://www.chicago.gov/city/en/depts/cpd/dataset/police_stations.html
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jun 10, 2016
    Dataset authored and provided by
    Chicago Police Departmenthttp://chicagopolice.org/
    Description

    Chicago Police district station locations and contact information.

  19. A

    Crime Reports

    • data.amerigeoss.org
    • datahub.austintexas.gov
    • +2more
    csv, json, rdf, xml
    Updated Jul 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Crime Reports [Dataset]. https://data.amerigeoss.org/sv/dataset/crime-reports
    Explore at:
    rdf, xml, json, csvAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Description

    AUSTIN POLICE DEPARTMENT DATA DISCLAIMER Please read and understand the following information.

    This dataset contains a record of incidents that the Austin Police Department responded to and wrote a report. Please note one incident may have several offenses associated with it, but this dataset only depicts the highest level offense of that incident. Data is from 2003 to present. This dataset is updated weekly. Understanding the following conditions will allow you to get the most out of the data provided. Due to the methodological differences in data collection, different data sources may produce different results. This database is updated weekly, and a similar or same search done on different dates can produce different results. Comparisons should not be made between numbers generated with this database to any other official police reports. Data provided represents only calls for police service where a report was written. Totals in the database may vary considerably from official totals following investigation and final categorization. Therefore, the data should not be used for comparisons with Uniform Crime Report statistics. The Austin Police Department does not assume any liability for any decision made or action taken or not taken by the recipient in reliance upon any information or data provided. Pursuant to section 552.301 (c) of the Government Code, the City of Austin has designated certain addresses to receive requests for public information sent by electronic mail. For requests seeking public records held by the Austin Police Department, please submit by utilizing the following link: https://apd-austintx.govqa.us/WEBAPP/_rs/(S(0auyup1oiorznxkwim1a1vpj))/supporthome.aspx

  20. w

    Call Data

    • data.wu.ac.at
    • data.seattle.gov
    • +3more
    csv, json, rdf, xml
    Updated May 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle (2018). Call Data [Dataset]. https://data.wu.ac.at/schema/data_gov/NjZiMTE0MDMtMTM4MS00NTU3LWExMGQtZDM2Njc3NjNhNjUw
    Explore at:
    csv, xml, rdf, jsonAvailable download formats
    Dataset updated
    May 8, 2018
    Dataset provided by
    City of Seattle
    Description

    This data represents police response activity. Each row is a record of a Call for Service (CfS) logged with the Seattle Police Department (SPD) Communications Center. Calls originated from the community and range from in progress or active emergencies to requests for problem solving. Additionally, officers will log calls from their observations of the field.

    Previous versions of this data set have withheld approximately 40% of calls. This updated process will release more than 95% of all calls but we will no longer provide latitude and longitude specific location data. In an effort to safeguard the privacy of our community, calls will only be located to the “beat” level. Beats are the most granular unit of management used for patrol deployment. To learn more about patrol deployment, please visit: https://www.seattle.gov/police/about-us/about-policing/precinct-and-patrol-boundaries.

    As with any data, certain conditions and qualifications apply:

    1) These data are queried from the Data Analytics Platform (DAP), and updated incrementally on a daily basis. A full refresh will occur twice a year and is intended to reconcile minor changes.

    2) This data set only contains records of police response. If a call is queued in the system but cleared before an officer can respond, it will not be included.

    3) These data contain administrative call types. Use the “Initial” and “Final” call type to identify the calls you wish to include in your analysis.

    We invite you to engage these data, ask questions and explore.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Matthew Connor (2022). Police Killings US [Dataset]. https://www.kaggle.com/datasets/azizozmen/police-killings-us
Organization logo

Police Killings US

Explore at:
453 scholarly articles cite this dataset (View in Google Scholar)
zip(62816 bytes)Available download formats
Dataset updated
Feb 6, 2022
Authors
Matthew Connor
Description

"In 2015, The Washington Post began to log every fatal shooting by an on-duty police officer in the United States. In that time there have been more than 5,000 such shootings recorded by The Post. After Michael Brown, an unarmed Black man, was killed in 2014 by police in Ferguson, Mo., a Post investigation found that the FBI undercounted fatal police shootings by more than half. This is because reporting by police departments is voluntary and many departments fail to do so. The Washington Post’s data relies primarily on news accounts, social media postings, and police reports. Analysis of more than five years of data reveals that the number and circumstances of fatal shootings and the overall demographics of the victims have remained relatively constant..." SOURCE ==> Washington Post Article

For more information about this story

This dataset has been prepared by The Washington Post (they keep updating it on runtime) with every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

2016 PoliceKillingUS DATASET
2017 PoliceKillingUS DATASET
2018 PoliceKillingUS DATASET
2019 PoliceKillingUS DATASET
2020 PoliceKillingUS DATASET

Features at the Dataset:

The file fatal-police-shootings-data.csv contains data about each fatal shooting in CSV format. The file can be downloaded at this URL. Each row has the following variables:

  • id: a unique identifier for each victim
  • name: the name of the victim
  • date: the date of the fatal shooting in YYYY-MM-DD format
  • manner_of_death: shot, shot and Tasered
  • armed: indicates that the victim was armed with some sort of implement that a police officer believed could inflict harm
    • undetermined: it is not known whether or not the victim had a weapon
    • unknown: the victim was armed, but it is not known what the object was
    • unarmed: the victim was not armed
  • age: the age of the victim
  • gender: the gender of the victim. The Post identifies victims by the gender they identify with if reports indicate that it differs from their biological sex.
    • M: Male
    • F: Female
    • None: unknown
  • race:
    • W: White, non-Hispanic
    • B: Black, non-Hispanic
    • A: Asian
    • N: Native American
    • H: Hispanic
    • O: Other
    • None: unknown
  • city: the municipality where the fatal shooting took place. Note that in some cases this field may contain a county name if a more specific municipality is unavailable or unknown.
  • state: two-letter postal code abbreviation
  • signs of mental illness: News reports have indicated the victim had a history of mental health issues, expressed suicidal intentions or was experiencing mental distress at the time of the shooting.
  • threat_level: The threat_level column was used to flag incidents for the story by Amy Brittain in October 2015. http://www.washingtonpost.com/sf/investigative/2015/10/24/on-duty-under-fire/ As described in the story, the general criteria for the attack label was that there was the most direct and immediate threat to life. That would include incidents where officers or others were shot at, threatened with a gun, attacked with other weapons or physical force, etc. The attack category is meant to flag the highest level of threat. The other and undetermined categories represent all remaining cases. Other includes many incidents where officers or others faced significant threats.
  • flee: News reports have indicated the victim was moving away from officers
    • Foot
    • Car
    • Not fleeing

The threat column and the fleeing column are not necessarily related. For example, there is an incident in which the suspect is fleeing and at the same time turns to fire at gun at the officer. Also, attacks represent a status immediately before fatal shots by police while fleeing could begin slightly earlier and involve a chase. - body_camera: News reports have indicated an officer w...

Search
Clear search
Close search
Google apps
Main menu