60 datasets found
  1. China Covid Cases and Deaths

    • kaggle.com
    zip
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SandhyaKrishnan02 (2023). China Covid Cases and Deaths [Dataset]. https://www.kaggle.com/datasets/sandhyakrishnan02/china-covid-cases-and-deaths
    Explore at:
    zip(8014 bytes)Available download formats
    Dataset updated
    Feb 7, 2023
    Authors
    SandhyaKrishnan02
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    China
    Description

    The dataset contains three columns: 1. Date: Contains the date 2. Total Cases: It provides details of the total number of covid cases. 3. Total Death: It provides details of the total number of deaths.

    Data is extracted from : https://covidlive.com.au/country/china

  2. T

    China Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). China Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/china/coronavirus-deaths
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 2020 - Jul 14, 2022
    Area covered
    China
    Description

    China recorded 5226 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 99256991 Coronavirus Cases. This dataset includes a chart with historical data for China Coronavirus Deaths.

  3. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  4. T

    China Coronavirus COVID-19 Recovered

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). China Coronavirus COVID-19 Recovered [Dataset]. https://tradingeconomics.com/china/coronavirus-recovered
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 11, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2019 - Dec 15, 2021
    Area covered
    China
    Description

    China recorded 86689 Coronavirus Recovered since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 4636 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Recovered.

  5. C

    China CN: COVID-19: No of Death: ytd

    • ceicdata.com
    Updated Oct 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: COVID-19: No of Death: ytd [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-death/cn-covid19-no-of-death-ytd
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 29, 2020 - May 10, 2020
    Area covered
    China
    Description

    China COVID-19: Number of Death: Year to Date data was reported at 4,633.000 Person in 10 May 2020. This stayed constant from the previous number of 4,633.000 Person for 09 May 2020. China COVID-19: Number of Death: Year to Date data is updated daily, averaging 3,213.000 Person from Jan 2020 (Median) to 10 May 2020, with 113 observations. The data reached an all-time high of 4,633.000 Person in 10 May 2020 and a record low of 4.000 Person in 19 Jan 2020. China COVID-19: Number of Death: Year to Date data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Death.

  6. COVID -19 Coronavirus Pandemic Dataset

    • kaggle.com
    zip
    Updated Sep 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). COVID -19 Coronavirus Pandemic Dataset [Dataset]. https://www.kaggle.com/datasets/whenamancodes/covid-19-coronavirus-pandemic-dataset/code
    Explore at:
    zip(10926 bytes)Available download formats
    Dataset updated
    Sep 30, 2022
    Authors
    Aman Chauhan
    Description

    Context

    The 2019–20 coronavirus pandemic is an ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, Hubei, China, in December 2019. On 11 March 2020, the World Health Organization declared the outbreak a pandemic. As of 11 March 2020, over 126,000 cases have been confirmed in more than 110 countries and territories, with major outbreaks in mainland China, Italy, South Korea, and Iran. More than 4,600 have died from the disease and 67,000 have recovered.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this data was scrapped from https://www.worldometers.info/coronavirus/.This data is solely for education purposes only.

    More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Hehe

    Acknowledgements

    This data is solely belongs to https://www.worldometers.info/coronavirus/. for licensing visit https://www.worldometers.info/licensing/

  7. C

    China CN: COVID-19: No of Death: ytd: Hubei: Wuhan

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: COVID-19: No of Death: ytd: Hubei: Wuhan [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-death/cn-covid19-no-of-death-ytd-hubei-wuhan
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 2, 2022 - Dec 13, 2022
    Area covered
    China
    Description

    COVID-19: Number of Death: Year to Date: Hubei: Wuhan data was reported at 3,869.000 Person in 13 Dec 2022. This stayed constant from the previous number of 3,869.000 Person for 12 Dec 2022. COVID-19: Number of Death: Year to Date: Hubei: Wuhan data is updated daily, averaging 3,869.000 Person from Jan 2020 (Median) to 13 Dec 2022, with 1069 observations. The data reached an all-time high of 3,869.000 Person in 13 Dec 2022 and a record low of 1.000 Person in 14 Jan 2020. COVID-19: Number of Death: Year to Date: Hubei: Wuhan data remains active status in CEIC and is reported by National Health Commission. The data is categorized under High Frequency Database’s Disease Outbreaks – Table CN.GZ: COVID-19: No of Death. Clinical diagnosis included in since 12Feb 自2月12日起纳入临床诊断

  8. Coronavirus (COVID-19) dataset

    • kaggle.com
    Updated Apr 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Balaaje (2020). Coronavirus (COVID-19) dataset [Dataset]. https://www.kaggle.com/balaaje/coronavirus-covid19-dataset/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 29, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Balaaje
    Description

    Context

    The 2019–20 coronavirus pandemic is an ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, Hubei, China, in December 2019. On 11 March 2020, the World Health Organization declared the outbreak a pandemic. As of 11 March 2020, over 126,000 cases have been confirmed in more than 110 countries and territories, with major outbreaks in mainland China, Italy, South Korea, and Iran. More than 4,600 have died from the disease and 67,000 have recovered.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this data was scrapped from https://www.worldometers.info/coronavirus/.This data is solely for education purposes only.

    Acknowledgements

    This data is solely belongs to https://www.worldometers.info/coronavirus/. for licensing visit https://www.worldometers.info/licensing/

  9. Corona Dataset

    • kaggle.com
    zip
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Khunt (2020). Corona Dataset [Dataset]. https://www.kaggle.com/datasets/amankhunt/corona-dataset
    Explore at:
    zip(304595 bytes)Available download formats
    Dataset updated
    Mar 12, 2020
    Authors
    Aman Khunt
    Description

    Context

    Data is extracted from the google sheets associated and made available here.

    Now data is available as csv files in the Johns Hopkins Github repository

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

  10. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  11. M

    Project Tycho Dataset; Counts of COVID-19 Reported In CHINA: 2019-2021

    • catalog.midasnetwork.us
    • tycho.pitt.edu
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center, Project Tycho Dataset; Counts of COVID-19 Reported In CHINA: 2019-2021 [Dataset]. http://doi.org/10.25337/T7/ptycho.v2.0/CN.840539006
    Explore at:
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 2019 - Jul 31, 2021
    Area covered
    First-order administrative division, Country
    Variables measured
    Viruses, disease, COVID-19, pathogen, mortality data, Population count, infectious disease, viral Infectious disease, vaccine-preventable Disease, viral respiratory tract infection, and 1 more
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    This Project Tycho dataset includes a CSV file with COVID-19 data reported in CHINA: 2019-12-30 - 2021-07-31. It contains counts of cases and deaths. Data for this Project Tycho dataset comes from: "COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University", "DXY - DX Doctor COVID-19 Global Pandemic Real-time Report Website", "European Centre for Disease Prevention and Control Website", "World Health Organization COVID-19 Dashboard". The data have been pre-processed into the standard Project Tycho data format v1.1.

  12. A

    Spatiotemporal data for 2019-Novel Coronavirus Covid-19 Cases and deaths

    • data.amerigeoss.org
    csv, pdf, txt
    Updated Jan 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). Spatiotemporal data for 2019-Novel Coronavirus Covid-19 Cases and deaths [Dataset]. https://data.amerigeoss.org/it/dataset/2019-novel-coronavirus-cases
    Explore at:
    txt(23645), csv(4916), pdf(15032), txt(7422), csv(795112664)Available download formats
    Dataset updated
    Jan 4, 2022
    Dataset provided by
    UN Humanitarian Data Exchange
    Description

    Data Overview

    This repository contains spatiotemporal data from many official sources for 2019-Novel Coronavirus beginning 2019 in Hubei, China ("nCoV_2019")

    You may not use this data for commercial purposes. If there is a need for commercial use of the data, please contact Metabiota at info@metabiota.com to obtain a commercial use license.

    The incidence data are in a CSV file format. One row in an incidence file contains a piece of epidemiological data extracted from the specified source.

    The file contains data from multiple sources at multiple spatial resolutions in cumulative and non-cumulative formats by confirmation status. To select a single time series of case or death data, filter the incidence dataset by source, spatial resolution, location, confirmation status, and cumulative flag.

    Data are collected, structured, and validated by Metabiota’s digital surveillance experts. The data structuring process is designed to produce the most reliable estimates of reported cases and deaths over space and time. The data are cleaned and provided in a uniform format such that information can be compared across multiple sources. Data are collected at the time of publication in the highest geographic and temporal resolutions available in the original report.

    This repository is intended to provide a single access point for data from a wide range of data sources. Data will be updated periodically with the latest epidemiological data. Metabiota maintains a database of epidemiological information for over two thousand high-priority infectious disease events. Please contact us (info@metabiota.com) if you are interested in licensing the complete dataset.

    Cumulative vs. Non-Cumulative Incidence

    Reporting sources provide either cumulative incidence, non-cumulative incidence, or both. If the source only provides a non-cumulative incidence value, the cumulative values are inferred using prior reports from the same source. Use the CUMULATIVE FLAG variable to subset the data to cumulative (TRUE) or non-cumulative (FALSE) values.

    Case Confirmation Status

    The incidence datasets include the confirmation status of cases and deaths when this information is provided by the reporting source. Subset the data by the CONFIRMATION_STATUS variable to either TOTAL, CONFIRMED, SUSPECTED, or PROBABLE to obtain the data of your choice.

    Total incidence values include confirmed, suspected, and probable incidence values. If a source only provides suspected, probable, or confirmed incidence, the total incidence is inferred to be the sum of the provided values. If the report does not specify confirmation status, the value is included in the "total" confirmation status value.

    The data provided under the "Metabiota Composite Source" often does not include suspected incidence due to inconsistencies in reporting cases and deaths with this confirmation status.

    Outcome - Cases vs. Deaths

    The incidence datasets include cases and deaths. Subset the data to either CASE or DEATH using the OUTCOME variable. It should be noted that deaths are included in case counts.

    Spatial Resolution

    Data are provided at multiple spatial resolutions. Data should be subset to a single spatial resolution of interest using the SPATIAL_RESOLUTION variable.

    Information is included at the finest spatial resolution provided to the original epidemic report. We also aggregate incidence to coarser geographic resolutions. For example, if a source only provides data at the province-level, then province-level data are included in the dataset as well as country-level totals. Users should avoid summing all cases or deaths in a given country for a given date without specifying the SPATIAL_RESOLUTION value. For example, subset the data to SPATIAL_RESOLUTION equal to “AL0” in order to view only the aggregated country level data.

    There are differences in administrative division naming practices by country. Administrative levels in this dataset are defined using the Google Geolocation API (https://developers.google.com/maps/documentation/geolocation/). For example, the data for the 2019-nCoV from one source provides information for the city of Beijing, which Google Geolocations indicates is a “locality.” Beijing is also the name of the municipality where the city Beijing is located. Thus, the 2019-nCoV dataset includes rows of data for both the city Beijing, as well as the municipality of the same name. If additional cities in the Beijing municipality reported data, those data would be aggregated with the city Beijing data to form the municipality Beijing data.

    Sources

    Data sources in this repository were selected to provide comprehensive spatiotemporal data for each outbreak. Data from a specific source can be selected using the SOURCE variable.

    In addition to the original reporting sources, Metabiota compiles multiple sources to generate the most comprehensive view of an outbreak. This compilation is stored in the database under the source name “Metabiota Composite Source.” The purpose of generating this new view of the outbreak is to provide the most accurate and precise spatiotemporal data for the outbreak. At this time, Metabiota does not incorporate unofficial - including media - sources into the “Metabiota Composite Source” dataset.

    Quality Assurance

    Data are collected by a team of digital surveillance experts and undergo many quality assurance tests. After data are collected, they are independently verified by at least one additional analyst. The data also pass an automated validation program to ensure data consistency and integrity.

    NonCommercial Use License

    • Creative Commons License Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

    • This is a human-readable summary of the Legal Code.

    • You are free:

      to Share — to copy, distribute and transmit the work to Remix — to adapt the work

    • Under the following conditions:

      Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

      Noncommercial — You may not use this work for commercial purposes.

      Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

    • With the understanding that:

      Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

      Public Domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.

      Other Rights — In no way are any of the following rights affected by the license: Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; The author's moral rights; Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.

    For details and the full license text, see http://creativecommons.org/licenses/by-nc-sa/3.0/

    Liability

    Metabiota shall in no event be liable for any decision taken by the user based on the data made available. Under no circumstances, shall Metabiota be liable for any damages (whatsoever) arising out of the use or inability to use the database. The entire risk arising out of the use of the database remains with the user.

  13. C

    China CN: COVID-19: No of Death: New Increase

    • ceicdata.com
    Updated May 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). China CN: COVID-19: No of Death: New Increase [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-death/cn-covid19-no-of-death-new-increase
    Explore at:
    Dataset updated
    May 10, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 29, 2020 - May 10, 2020
    Area covered
    China
    Description

    China COVID-19: Number of Death: New Increase data was reported at 0.000 Person in 10 May 2020. This stayed constant from the previous number of 0.000 Person for 09 May 2020. China COVID-19: Number of Death: New Increase data is updated daily, averaging 8.000 Person from Jan 2020 (Median) to 10 May 2020, with 111 observations. The data reached an all-time high of 254.000 Person in 12 Feb 2020 and a record low of 0.000 Person in 10 May 2020. China COVID-19: Number of Death: New Increase data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Death.

  14. CHINA AND ITALY.xlsx

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salvador Ávila (2023). CHINA AND ITALY.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.13562348.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Salvador Ávila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Italy, China
    Description

    This file contains data on cases and deaths by the new coronavirus in China and the first wave in Italy, collected since May 13. Due to the high amount of contaminated and dead launched in February 13th and April 17th, in China, we redistributed the data, maintaining the original shape of the curve. These data were used to build the epidemiological curves of the countries, aiming to enable the analysis of health management.

  15. China COVID19 Data

    • kaggle.com
    zip
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Kumar (2020). China COVID19 Data [Dataset]. https://www.kaggle.com/datasets/aestheteaman01/china-covid19-data/discussion
    Explore at:
    zip(1201401 bytes)Available download formats
    Dataset updated
    Apr 5, 2020
    Authors
    Aman Kumar
    Area covered
    China
    Description

    This Dataset holds information for all the confirmed cases of COVID-19 Cases in 31 Districts across China.

    Along with the Confirmed, total death and recovered cases have also been present.

    Last updated - 16th March 2020, 00:00 HRS (GMT +5:30)

  16. Coronavirus (COVID-19) statistics in China

    • figshare.com
    txt
    Updated Apr 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenyuan Liu (2020). Coronavirus (COVID-19) statistics in China [Dataset]. http://doi.org/10.6084/m9.figshare.12097635.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Wenyuan Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    A data set on COVID-19 pandemic in China, which covers daily statistics of confirmed cases (new and cumulative), recoveries (new and cumulative) and deaths (new and cumulative) at city level. All data are extracted from Chinese government reports.

  17. COVID-19 Country Level Timeseries

    • kaggle.com
    zip
    Updated Mar 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpan Das (2020). COVID-19 Country Level Timeseries [Dataset]. https://www.kaggle.com/arpandas65/covid19-country-level-timeseries
    Explore at:
    zip(60020 bytes)Available download formats
    Dataset updated
    Mar 29, 2020
    Authors
    Arpan Das
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.

    COVID-19 Country Level Timeseries Dataset

    This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.

    Column Descriptions

    The data set contains the following columns:
    ObservationDate: The date on which the incidents are observed country: Country of the Outbreak Confirmed: Number of confirmed cases till observation date Deaths: Number of death cases till observation date Recovered: Number of recovered cases till observation date New Confirmed: Number of new confirmed cases on observation date New Deaths: Number of New death cases on observation date New Recovered: Number of New recovered cases on observation date latitude: Latitude of the affected country longitude: Longitude of the affected country

    Acknowledgements

    This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.

    Original Data Source

    Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus

  18. m

    COVID-19 Combined Data-set with Improved Measurement Errors

    • data.mendeley.com
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Afshin Ashofteh (2020). COVID-19 Combined Data-set with Improved Measurement Errors [Dataset]. http://doi.org/10.17632/nw5m4hs3jr.3
    Explore at:
    Dataset updated
    May 13, 2020
    Authors
    Afshin Ashofteh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.

  19. COVID-19 Worldwide Daily Data

    • kaggle.com
    zip
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19
    Explore at:
    zip(469881 bytes)Available download formats
    Dataset updated
    Aug 28, 2020
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  20. a

    Deaths

    • prep-response-portal-napsg.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Deaths [Dataset]. https://prep-response-portal-napsg.hub.arcgis.com/datasets/1cb306b5331945548745a5ccd290188e
    Explore at:
    Dataset updated
    Mar 26, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
SandhyaKrishnan02 (2023). China Covid Cases and Deaths [Dataset]. https://www.kaggle.com/datasets/sandhyakrishnan02/china-covid-cases-and-deaths
Organization logo

China Covid Cases and Deaths

China Covid Cases and Deaths till 5th Jan 2023

Explore at:
zip(8014 bytes)Available download formats
Dataset updated
Feb 7, 2023
Authors
SandhyaKrishnan02
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
China
Description

The dataset contains three columns: 1. Date: Contains the date 2. Total Cases: It provides details of the total number of covid cases. 3. Total Death: It provides details of the total number of deaths.

Data is extracted from : https://covidlive.com.au/country/china

Search
Clear search
Close search
Google apps
Main menu