Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data provided alongside the paper "An all-Africa dataset of energy model “supply regions” for solar PV and wind power" by Sterl et al. (2022).
It concerns a novel representative subset of attractive sites for solar PV and onshore wind power for the entire African continent. We refer to these sites as “Model Supply Regions” (MSRs). This MSR dataset was created from an in-depth analysis of various existing datasets on resource potential, grid infrastructure, land use, topography and others (see Methods), and achieves hourly temporal resolution and kilometre-scale spatial resolution. This dataset fills an important research need by closing the gap between comprehensive datasets on African VRE potential (such as the Global Solar Atlas and Global Wind Atlas) on the one hand, and the input needed to run cost-optimisation models on the other. It also allows a detailed analysis of the trade-offs involved in exploiting excellent, but far-from-grid resources as compared to mediocre but more accessible resources, which is a crucial component of power systems planning to be elaborated for many African countries.
Five separate datasets are included:
Folder (1) provides shapefiles of each country's overall feasible area for developing solar and wind power projects, under the restrictions/criteria mentioned above and described in Sterl et al. (2022).
Folder (2) provides the best 5% ("best" measured by expected LCOE, from lowest to highest, including grid and road extension costs; 5% measured in terms of coverage of a country's area) of each country's solar and wind development potential, including hourly time series for model input.
Folder (3) provides the corresponding shapefiles.
Folder (4) provides simplified/aggregated results in terms of MSR clusters (see Sterl et al. 2022 for details), alongside hourly time series based on the meteorological year 2018. The amount of clusters was chosen to be 2, 5 or 10 depending on country size.
Folder (5) provides PDF-file maps at the country level, showing resource strength and clustering outcomes by MSR (post-screening).
Explanations of the headers in any spreadsheet files are provided in the Supplementary Information of Sterl et al. (2022).
Countries/territories included in the dataset:
Algeria
Angola
Benin
Botswana
Burkina Faso
Burundi
Cameroon
Central African Republic
Chad
Congo Republic
Democratic Republic of the Congo
Djibouti
Egypt
Equatorial Guinea
Eritrea
Eswatini
Ethiopia
Gabon
The Gambia
Ghana
Guinea
Guiné-Bissau
Côte d'Ivoire
Kenya
Lesotho
Liberia
Libya
Madagascar
Malawi
Mali
Mauritania
Morocco
Mozambique
Namibia
Niger
Nigeria
Rwanda
Senegal
Sierra Leone
Somalia
South Africa
South Sudan
Sudan
Togo
Tunisia
Uganda
Tanzania
Zambia
Zimbabwe
References
Sterl, S., Hussain, B., Miketa, A. et al. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci Data 9, 664 (2022). https://doi.org/10.1038/s41597-022-01786-5
See also
Sterl, S. (2024). Solar PV and wind power Model Supply Region (MSR) dataset as energy model input for countries in Central and South America (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10650822
Facebook
TwitterRound 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This zip file contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country.
Notes:
Facebook
TwitterThe Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics.
The 12 country datasetis a combined dataset for the 12 African countries surveyed during round 1 of the survey, conducted between 1999-2000 (Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria South Africa, Tanzania, Uganda, Zambia and Zimbabwe), plus data from the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The Round 1 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Lesotho, Malawi, Mali, Namibia, Nigeria, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.
Individuals
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample survey data [ssd]
Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:
• using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.
The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.
Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.
The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.
Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.
Sample stages Samples are drawn in either four or five stages:
Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.
To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.
Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.
Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles
Face-to-face [f2f]
Because Afrobarometer Round 1 emerged out of several different survey research efforts, survey instruments were not standardized across all countries, there are a number of features of the questionnaires that should be noted, as follows: • In most cases, the data set only includes those questions/variables that were asked in nine or more countries. Complete Round 1 data sets for each individual country have already been released, and are available from ICPSR or from the Afrobarometer website at www.afrobarometer.org. • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires. • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed. • Response options also varied on some questions, and where applicable, these differences are also noted.
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=odblhttps://datacatalog.worldbank.org/public-licenses?fragment=odbl
Note: This dataset has been updated with transmission lines for the MENA region.
This is the most complete and up-to-date open map of Africa's electricity grid network. This dataset serves as an updated and improved replacement for the Africa Infrastructure Country Diagnostic (AICD) data that was published in 2007.
This dataset includes planned and existing grid lines for all continental African countries and Madagascar, as well as the Middle East region. The lines range in voltage from sub-kV to 700 kV EHV lines, though there is a very large variation in the completeness of data by country.
An interactive tool has been created for exploring this data, the Africa Electricity Grids Explorer.
The primary sources for this dataset are as follows:
Africa Infrastructure Country Diagnostic (AICD)
OSM © OpenStreetMap contributors
For MENA: Arab Union of Electricity and country utilities.
For West Africa: West African Power Pool (WAPP) GIS database
World Bank projects archive and IBRD maps
There were many additional sources for specific countries and areas. This information is contained in the files of this dataset, and can also be found by browsing the individual country datasets, which contain more extensive information.
Some of the data, notably that from the AICD and from World Bank project archives, may be very out of date. Where possible this has been improved with data from other sources, but in many cases this wasn't possible. This varies significantly from country to country, depending on data availability. Thus, many new lines may exist which aren't shown, and planned lines may have completely changed or already been constructed.
The data that comes from World Bank project archives has been digitized from PDF maps. This means that these lines should serve as an indication of extent and general location, but shouldn't be used for precisely location grid lines.
Facebook
TwitterThis dataset provides a two-tier annual Land Use (LU) and Urban Land Cover (LC) product suite over three African countries, Ethiopia, Nigeria, and South Africa, across a 5-year period of 2016-2020. Remote sensing data sources were used to create 30-m resolution LU maps (Tier-1), which were then utilized to delineate urban boundaries for 10-m resolution LC classes (Tier-2). Random Forest machine learning classifier models were trained on reference data for each tier and country (but one model was trained across all years); models were validated using a separate reference data set for each tier and country. Tier-1 LU maps were based on the 30-m Landsat time series, and Tier-2 urban LC maps were based on the 10-m Sentinel-2 time series. Additional data sources included climate, topography, night-time light, and soils. The overall map accuracy was 65-80% for Tier-1 maps and 60-80% for Tier-2 maps, depending on the year and country. The data are provided in cloud optimized GeoTIFF (COG) format.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterResources with a wide array of statistics on voter turnout from select countries. It contains the most comprehensive global collection of voter turnout statistics from presidential and parliamentary elections.
Facebook
TwitterThis layer shows the countries of Africa. You can click on the map to get info on each country, including its name and flag, as well as links to detailed information in The World Factbook and UN Human Development Reports.The Africa Countries layer was created by joining country population data from The World Factbook to the World Countries (Generalized) layer, using ArcGIS Online analysis tools. The popup for the map uses Arcade expressions to reference other online resources based on the country code for the selected country.The Flags of countries are provided by reference to Flagpedia, which provides flags of countries of the world and the U.S. states for display and download.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Global Roads Open Access Data Set, Version 1 (gROADSv1) was developed under the auspices of the CODATA Global Roads Data Development Task Group. The data set combines the best available roads data by country into a global roads coverage, using the UN Spatial Data Infrastructure Transport (UNSDI-T) version 2 as a common data model. All country road networks have been joined topologically at the borders, and many countries have been edited for internal topology. Source data for each country are provided in the documentation, and users are encouraged to refer to the readme file for use constraints that apply to a small number of countries. Because the data are compiled from multiple sources, the date range for road network representations ranges from the 1980s to 2010 depending on the country (most countries have no confirmed date), and spatial accuracy varies. The baseline global data set was compiled by the Information Technology Outreach Services (ITOS) of the University of Georgia. Updated data for 27 countries and 6 smaller geographic entities were assembled by Columbia University's Center for International Earth Science Information Network (CIESIN), with a focus largely on developing countries with the poorest data coverage.
Facebook
TwitterData from geophysical surveys in many African countries carried out by the British Geological Survey for different agencies. The surveys range from regional gravity and airborne magnetic mapping to targetted surveys for mineral and water. Individual surveys do not yet have metadata entries: this entry describes a notional database that represents all geophysical surveys carried out within the region.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe number of Reddit users in Africa was forecast to continuously increase between 2024 and 2028 by in total 4.7 million users (+66.67 percent). After the eighth consecutive increasing year, the Reddit user base is estimated to reach 11.78 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like North America and Asia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Swahili is spoken by 100-150 million people across East Africa. In Tanzania, it is one of two national languages (the other is English) and it is the official language of instruction in all schools. News in Swahili is an important part of the media sphere in Tanzania.
News contributes to education, technology, and the economic growth of a country, and news in local languages plays an important cultural role in many Africa countries. In the modern age, African languages in news and other spheres are at risk of being lost as English becomes the dominant language in online spaces.
The Swahili news dataset was created to reduce the gap of using the Swahili language to create NLP technologies and help AI practitioners in Tanzania and across the Africa continent to practice their NLP skills to solve different problems in organizations or societies related to the Swahili language. Swahili News were collected from different websites that provide news in the Swahili language. I was able to find some websites that provide news in Swahili only and others in different languages including Swahili.
The dataset was created for a specific task of text classification, this means each news content can be categorized into six different topics (Local News, International News, Finance News, Health News, Sports News, and Entertainment news). The dataset comes with a specified train/test split. The train set contains 75% of the dataset.
Acknowledgment: This project was supported by the AI4D language dataset fellowship through K4All and Zindi Africa.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Large go-around, also referred to as missed approach, data set. The data set is in support of the paper presented at the OpenSky Symposium on November the 10th.
If you use this data for a scientific publication, please consider citing our paper.
The data set contains landings from 176 (mostly) large airports from 44 different countries. The landings are labelled as performing a go-around (GA) or not. In total, the data set contains almost 9 million landings with more than 33000 GAs. The data was collected from OpenSky Network's historical data base for the year 2019. The published data set contains multiple files:
go_arounds_minimal.csv.gz
Compressed CSV containing the minimal data set. It contains a row for each landing and a minimal amount of information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
The last two columns, n_approaches and n_rwy_approached, are useful to filter out training and calibration flight. These have usually a large number of n_approaches, so an easy way to exclude them is to filter by n_approaches > 2.
go_arounds_augmented.csv.gz
Compressed CSV containing the augmented data set. It contains a row for each landing and additional information about the landing, and if it was a GA. The data is structured in the following way:
Column name
Type
Description
time
date time
UTC time of landing or first GA attempt
icao24
string
Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
callsign
string
Aircraft identifier in air-ground communications
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
has_ga
string
"True" if at least one GA was performed, otherwise "False"
n_approaches
integer
Number of approaches identified for this flight
n_rwy_approached
integer
Number of unique runways approached by this flight
registration
string
Aircraft registration
typecode
string
Aircraft ICAO typecode
icaoaircrafttype
string
ICAO aircraft type
wtc
string
ICAO wake turbulence category
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometre
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
operator_country
string
ISO Alpha-3 country code of the operator
operator_region
string
Geographical region of the operator of the aircraft (either Europe, North America, South America, Asia, Africa, or Oceania)
wind_speed_knts
integer
METAR, surface wind speed in knots
wind_dir_deg
integer
METAR, surface wind direction in degrees
wind_gust_knts
integer
METAR, surface wind gust speed in knots
visibility_m
float
METAR, visibility in m
temperature_deg
integer
METAR, temperature in degrees Celsius
press_sea_level_p
float
METAR, sea level pressure in hPa
press_p
float
METAR, QNH in hPA
weather_intensity
list
METAR, list of present weather codes: qualifier - intensity
weather_precipitation
list
METAR, list of present weather codes: weather phenomena - precipitation
weather_desc
list
METAR, list of present weather codes: qualifier - descriptor
weather_obscuration
list
METAR, list of present weather codes: weather phenomena - obscuration
weather_other
list
METAR, list of present weather codes: weather phenomena - other
This data set is augmented with data from various public data sources. Aircraft related data is mostly from the OpenSky Network's aircraft data base, the METAR information is from the Iowa State University, and the rest is mostly scraped from different web sites. If you need help with the METAR information, you can consult the WMO's Aerodrom Reports and Forecasts handbook.
go_arounds_agg.csv.gz
Compressed CSV containing the aggregated data set. It contains a row for each airport-runway, i.e. every runway at every airport for which data is available. The data is structured in the following way:
Column name
Type
Description
airport
string
ICAO airport code where the aircraft is landing
runway
string
Runway designator on which the aircraft landed
n_landings
integer
Total number of landings observed on this runway in 2019
ga_rate
float
Go-around rate, per 1000 landings
glide_slope_angle
float
Angle of the ILS glide slope in degrees
has_intersection
string
Boolean that is true if the runway has an other runway intersecting it, otherwise false
rwy_length
float
Length of the runway in kilometres
airport_country
string
ISO Alpha-3 country code of the airport
airport_region
string
Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
This aggregated data set is used in the paper for the generalized linear regression model.
Downloading the trajectories
Users of this data set with access to OpenSky Network's Impala shell can download the historical trajectories from the historical data base with a few lines of Python code. For example, you want to get all the go-arounds of the 4th of January 2019 at London City Airport (EGLC). You can use the Traffic library for easy access to the database:
import datetime from tqdm.auto import tqdm import pandas as pd from traffic.data import opensky from traffic.core import Traffic
df = pd.read_csv("go_arounds_minimal.csv.gz", low_memory=False) df["time"] = pd.to_datetime(df["time"])
airport = "EGLC" start = datetime.datetime(year=2019, month=1, day=4).replace( tzinfo=datetime.timezone.utc ) stop = datetime.datetime(year=2019, month=1, day=5).replace( tzinfo=datetime.timezone.utc )
df_selection = df.query("airport==@airport & has_ga & (@start <= time <= @stop)")
flights = [] delta_time = pd.Timedelta(minutes=10) for _, row in tqdm(df_selection.iterrows(), total=df_selection.shape[0]): # take at most 10 minutes before and 10 minutes after the landing or go-around start_time = row["time"] - delta_time stop_time = row["time"] + delta_time
# fetch the data from OpenSky Network
flights.append(
opensky.history(
start=start_time.strftime("%Y-%m-%d %H:%M:%S"),
stop=stop_time.strftime("%Y-%m-%d %H:%M:%S"),
callsign=row["callsign"],
return_flight=True,
)
)
Traffic.from_flights(flights)
Additional files
Additional files are available to check the quality of the classification into GA/not GA and the selection of the landing runway. These are:
validation_table.xlsx: This Excel sheet was manually completed during the review of the samples for each runway in the data set. It provides an estimate of the false positive and false negative rate of the go-around classification. It also provides an estimate of the runway misclassification rate when the airport has two or more parallel runways. The columns with the headers highlighted in red were filled in manually, the rest is generated automatically.
validation_sample.zip: For each runway, 8 batches of 500 randomly selected trajectories (or as many as available, if fewer than 4000) classified as not having a GA and up to 8 batches of 10 random landings, classified as GA, are plotted. This allows the interested user to visually inspect a random sample of the landings and go-arounds easily.
Facebook
TwitterThis dataset was developed by researchers at the University of Denver as part of a pilot project studying how civil resistance in developing countries against corporate human rights abuses is most effective. The dataset is publicly available on the researcher's website: http://www.ericachenoweth.com/research/. It is under the paper title Civil Resistance and Corporate Behavior: Mapping Trends and Assessing Impact.
Facebook
Twitterlicense: apache-2.0 tags: - africa - sustainable-development-goals - world-health-organization - development
Non-fatal occupational injuries among employees (per 100 000 employees)
Dataset Description
This dataset provides country-level data for the indicator "8.8.1 Non-fatal occupational injuries among employees (per 100 000 employees)" across African nations, sourced from the World Health Organization's (WHO) data portal on Sustainable Development Goals… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/non-fatal-workplace-injuries-total-for-african-countries.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data provided alongside the paper "An all-Africa dataset of energy model “supply regions” for solar PV and wind power" by Sterl et al. (2022).
It concerns a novel representative subset of attractive sites for solar PV and onshore wind power for the entire African continent. We refer to these sites as “Model Supply Regions” (MSRs). This MSR dataset was created from an in-depth analysis of various existing datasets on resource potential, grid infrastructure, land use, topography and others (see Methods), and achieves hourly temporal resolution and kilometre-scale spatial resolution. This dataset fills an important research need by closing the gap between comprehensive datasets on African VRE potential (such as the Global Solar Atlas and Global Wind Atlas) on the one hand, and the input needed to run cost-optimisation models on the other. It also allows a detailed analysis of the trade-offs involved in exploiting excellent, but far-from-grid resources as compared to mediocre but more accessible resources, which is a crucial component of power systems planning to be elaborated for many African countries.
Five separate datasets are included:
Folder (1) provides shapefiles of each country's overall feasible area for developing solar and wind power projects, under the restrictions/criteria mentioned above and described in Sterl et al. (2022).
Folder (2) provides the best 5% ("best" measured by expected LCOE, from lowest to highest, including grid and road extension costs; 5% measured in terms of coverage of a country's area) of each country's solar and wind development potential, including hourly time series for model input.
Folder (3) provides the corresponding shapefiles.
Folder (4) provides simplified/aggregated results in terms of MSR clusters (see Sterl et al. 2022 for details), alongside hourly time series based on the meteorological year 2018. The amount of clusters was chosen to be 2, 5 or 10 depending on country size.
Folder (5) provides PDF-file maps at the country level, showing resource strength and clustering outcomes by MSR (post-screening).
Explanations of the headers in any spreadsheet files are provided in the Supplementary Information of Sterl et al. (2022).
Countries/territories included in the dataset:
Algeria
Angola
Benin
Botswana
Burkina Faso
Burundi
Cameroon
Central African Republic
Chad
Congo Republic
Democratic Republic of the Congo
Djibouti
Egypt
Equatorial Guinea
Eritrea
Eswatini
Ethiopia
Gabon
The Gambia
Ghana
Guinea
Guiné-Bissau
Côte d'Ivoire
Kenya
Lesotho
Liberia
Libya
Madagascar
Malawi
Mali
Mauritania
Morocco
Mozambique
Namibia
Niger
Nigeria
Rwanda
Senegal
Sierra Leone
Somalia
South Africa
South Sudan
Sudan
Togo
Tunisia
Uganda
Tanzania
Zambia
Zimbabwe
References
Sterl, S., Hussain, B., Miketa, A. et al. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci Data 9, 664 (2022). https://doi.org/10.1038/s41597-022-01786-5
See also
Sterl, S. (2024). Solar PV and wind power Model Supply Region (MSR) dataset as energy model input for countries in Central and South America (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10650822