15 datasets found
  1. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Africa, Malawi, Lesotho, Zambia, Botswana, Zimbabwe, Namibia, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  2. w

    Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) - Botswana, Cabo Verde, Ghana, Kenya, Lesotho, Mali, Mozambique, Malawi, Namibia, Nigeria, Senegal, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/886
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    2002 - 2004
    Area covered
    Senegal, Mali, Nigeria, Mozambique, Malawi, Ghana, Lesotho, Botswana, Namibia, Cabo Verde
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 2 of the Afrobarometer, conducted from 2002-2004 in 16 countries, including Botswana, Cape Verde, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe

    Geographic coverage

    The Round 2 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Republic of Cabo Verde, Senegal, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Certain questions in the questionnaires for the Afrobarometer 2 survey addressed country-specific issues, but many of the same questions were asked across surveys. Citizens of the 16 countries were asked questions about their economic and social situations, and their opinions were elicited on recent political and economic changes within their country.

  3. a

    Africa Countries

    • rwanda.africageoportal.com
    • africageoportal.com
    • +4more
    Updated Nov 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2018). Africa Countries [Dataset]. https://rwanda.africageoportal.com/datasets/64aff05d66ff443caf9711fd988e21dd
    Explore at:
    Dataset updated
    Nov 22, 2018
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This layer shows the countries of Africa. You can click on the map to get info on each country, including its name and flag, as well as links to detailed information in The World Factbook and UN Human Development Reports.The Africa Countries layer was created by joining country population data from The World Factbook to the World Countries (Generalized) layer, using ArcGIS Online analysis tools. The popup for the map uses Arcade expressions to reference other online resources based on the country code for the selected country.The Flags of countries are provided by reference to Flagpedia, which provides flags of countries of the world and the U.S. states for display and download.

  4. Afrobarometer Survey 2019-2021, Merged 34 Country - Africa

    • datafirst.uct.ac.za
    Updated Oct 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Cape Town (UCT) (2024). Afrobarometer Survey 2019-2021, Merged 34 Country - Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/991
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    University of Cape Town (UCT)
    Ghana Centre for Democratic Development (CDD)
    Institute for Development Studies (IDS)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    Time period covered
    2019 - 2021
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countires and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, and Round 4 (2008) 20 countries.The survey covered 34 countries in Round 5 (2011-2013), 36 countries in Round 6 (2014-2015), and 34 countries in Round 7 (2016-2018). Round 8 covered 34 African countries. The 34 countries covered in Round 8 (2019-2021) are:

    Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Geographic coverage

    The survey has national coverage in the following 34 African countries: Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Analysis unit

    Households and individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    Kind of data

    Sample survey data

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalised settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewers alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found in Section 5 of the Afrobarometer Round 5 Survey Manual

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaire for Round 3 addressed country-specific issues, but many of the same questions were asked across surveys. The survey instruments were not standardized across all countries and the following features should be noted:

    • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires.

    • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed.

    • Response options also varied on some questions, and where applicable, these differences are also noted.

  5. w

    Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) - Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/885
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2001
    Area covered
    Uganda, Tanzania, Malawi, Ghana, Lesotho, Mali, Nigeria, Botswana, Zimbabwe, Namibia
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics.

    The 12 country datasetis a combined dataset for the 12 African countries surveyed during round 1 of the survey, conducted between 1999-2000 (Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria South Africa, Tanzania, Uganda, Zambia and Zimbabwe), plus data from the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    Geographic coverage

    The Round 1 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Lesotho, Malawi, Mali, Namibia, Nigeria, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Because Afrobarometer Round 1 emerged out of several different survey research efforts, survey instruments were not standardized across all countries, there are a number of features of the questionnaires that should be noted, as follows: • In most cases, the data set only includes those questions/variables that were asked in nine or more countries. Complete Round 1 data sets for each individual country have already been released, and are available from ICPSR or from the Afrobarometer website at www.afrobarometer.org. • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires. • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed. • Response options also varied on some questions, and where applicable, these differences are also noted.

  6. Continent of Africa: High Resolution Population Density Maps

    • data.amerigeoss.org
    • lschub.kalro.org
    • +1more
    geotiff
    Updated Dec 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). Continent of Africa: High Resolution Population Density Maps [Dataset]. https://data.amerigeoss.org/dataset/showcases/highresolutionpopulationdensitymaps
    Explore at:
    geotiff(196688306)Available download formats
    Dataset updated
    Dec 21, 2021
    Dataset provided by
    United Nationshttp://un.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    This zip file contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country.

    Notes:

    • The country-by-country files that were previously hosted here have been moved into separate datasets. You can find all of them here.
    • South Sudan, Sudan, Somalia and Ethiopia are intentionally omitted from this dataset. However, a country-level dataset for Ethiopia can be found here.
    • These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe.
  7. a

    Africa Land Cover

    • africageoportal.com
    • rwanda.africageoportal.com
    • +3more
    Updated Dec 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2017). Africa Land Cover [Dataset]. https://www.africageoportal.com/maps/africa::africa-land-cover/about
    Explore at:
    Dataset updated
    Dec 7, 2017
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.

  8. Z

    Swahili : News Classification Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Davis David (2021). Swahili : News Classification Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4300293
    Explore at:
    Dataset updated
    Sep 18, 2021
    Dataset authored and provided by
    Davis David
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Swahili is spoken by 100-150 million people across East Africa. In Tanzania, it is one of two national languages (the other is English) and it is the official language of instruction in all schools. News in Swahili is an important part of the media sphere in Tanzania.

    News contributes to education, technology, and the economic growth of a country, and news in local languages plays an important cultural role in many Africa countries. In the modern age, African languages in news and other spheres are at risk of being lost as English becomes the dominant language in online spaces.

    The Swahili news dataset was created to reduce the gap of using the Swahili language to create NLP technologies and help AI practitioners in Tanzania and across the Africa continent to practice their NLP skills to solve different problems in organizations or societies related to the Swahili language. Swahili News were collected from different websites that provide news in the Swahili language. I was able to find some websites that provide news in Swahili only and others in different languages including Swahili.

    The dataset was created for a specific task of text classification, this means each news content can be categorized into six different topics (Local News, International News, Finance News, Health News, Sports News, and Entertainment news). The dataset comes with a specified train/test split. The train set contains 75% of the dataset.

    Acknowledgment: This project was supported by the AI4D language dataset fellowship through K4All and Zindi Africa.

  9. Data for the paper « An all-Africa dataset of energy model "supply regions"...

    • zenodo.org
    • data.niaid.nih.gov
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Sterl; Sebastian Sterl; Bilal Hussain; Mohamed Elabbas; Mohamed Elabbas; Bilal Hussain (2025). Data for the paper « An all-Africa dataset of energy model "supply regions" for solar PV and wind power » [Dataset]. http://doi.org/10.5281/zenodo.14870967
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sebastian Sterl; Sebastian Sterl; Bilal Hussain; Mohamed Elabbas; Mohamed Elabbas; Bilal Hussain
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    This dataset contains data provided alongside the paper "An all-Africa dataset of energy model “supply regions” for solar PV and wind power" by Sterl et al. (2022).

    It concerns a novel representative subset of attractive sites for solar PV and onshore wind power for the entire African continent. We refer to these sites as “Model Supply Regions” (MSRs). This MSR dataset was created from an in-depth analysis of various existing datasets on resource potential, grid infrastructure, land use, topography and others (see Methods), and achieves hourly temporal resolution and kilometre-scale spatial resolution. This dataset fills an important research need by closing the gap between comprehensive datasets on African VRE potential (such as the Global Solar Atlas and Global Wind Atlas) on the one hand, and the input needed to run cost-optimisation models on the other. It also allows a detailed analysis of the trade-offs involved in exploiting excellent, but far-from-grid resources as compared to mediocre but more accessible resources, which is a crucial component of power systems planning to be elaborated for many African countries.

    Five separate datasets are included:

    Folder (1) provides shapefiles of each country's overall feasible area for developing solar and wind power projects, under the restrictions/criteria mentioned above and described in Sterl et al. (2022).

    Folder (2) provides the best 5% ("best" measured by expected LCOE, from lowest to highest, including grid and road extension costs; 5% measured in terms of coverage of a country's area) of each country's solar and wind development potential, including hourly time series for model input.

    Folder (3) provides the corresponding shapefiles.

    Folder (4) provides simplified/aggregated results in terms of MSR clusters (see Sterl et al. 2022 for details), alongside hourly time series based on the meteorological year 2018. The amount of clusters was chosen to be 2, 5 or 10 depending on country size.

    Folder (5) provides PDF-file maps at the country level, showing resource strength and clustering outcomes by MSR (post-screening).

    Explanations of the headers in any spreadsheet files are provided in the Supplementary Information of Sterl et al. (2022).

    Countries/territories included in the dataset:

    Algeria
    Angola
    Benin
    Botswana
    Burkina Faso
    Burundi
    Cameroon
    Central African Republic
    Chad
    Congo Republic
    Democratic Republic of the Congo
    Djibouti
    Egypt
    Equatorial Guinea
    Eritrea
    Eswatini
    Ethiopia
    Gabon
    The Gambia
    Ghana
    Guinea
    Guiné-Bissau
    Côte d'Ivoire
    Kenya
    Lesotho
    Liberia
    Libya
    Madagascar
    Malawi
    Mali
    Mauritania
    Morocco
    Mozambique
    Namibia
    Niger
    Nigeria
    Rwanda
    Senegal
    Sierra Leone
    Somalia
    South Africa
    South Sudan
    Sudan
    Togo
    Tunisia
    Uganda
    Tanzania
    Zambia
    Zimbabwe

    References

    Sterl, S., Hussain, B., Miketa, A. et al. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci Data 9, 664 (2022). https://doi.org/10.1038/s41597-022-01786-5

    See also

    Sterl, S. (2024). Solar PV and wind power Model Supply Region (MSR) dataset as energy model input for countries in Central and South America (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10650822

  10. Africa - Electricity Transmission and Distribution Grid Map

    • cloud.csiss.gmu.edu
    geojson, shp zip
    Updated Aug 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Africa - Electricity Transmission and Distribution Grid Map [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/africa-electricity-transmission-and-distribution-2017
    Explore at:
    geojson, shp zipAvailable download formats
    Dataset updated
    Aug 8, 2019
    Dataset provided by
    World Bankhttps://www.worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Note: This dataset has been updated with transmission lines for the MENA region. This is the most complete and up-to-date open map of Africa's electricity grid network. This dataset serves as an updated and improved replacement for the Africa Infrastructure Country Diagnostic (AICD) data that was published in 2007. Coverage This dataset includes planned and existing grid lines for all continental African countries and Madagascar, as well as the Middle East region. The lines range in voltage from sub-kV to 700 kV EHV lines, though there is a very large variation in the completeness of data by country. An interactive tool has been created for exploring this data, the Africa Electricity Grids Explorer. Sources The primary sources for this dataset are as follows: Africa Infrastructure Country Diagnostic (AICD) OSM © OpenStreetMap contributors For MENA: Arab Union of Electricity and country utilities. For West Africa: West African Power Pool (WAPP) GIS database World Bank projects archive and IBRD maps There were many additional sources for specific countries and areas. This information is contained in the files of this dataset, and can also be found by browsing the individual country datasets, which contain more extensive information. Limitations Some of the data, notably that from the AICD and from World Bank project archives, may be very out of date. Where possible this has been improved with data from other sources, but in many cases this wasn't possible. This varies significantly from country to country, depending on data availability. Thus, many new lines may exist which aren't shown, and planned lines may have completely changed or already been constructed. The data that comes from World Bank project archives has been digitized from PDF maps. This means that these lines should serve as an indication of extent and general location, but shouldn't be used for precisely location grid lines.

  11. Afrobarometer Survey 2016-2018, Merged Round 7 Data (34 Countries) - Benin,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2021). Afrobarometer Survey 2016-2018, Merged Round 7 Data (34 Countries) - Benin, Burkina Faso, Botswana, Côte d'Ivoire, Cameroon, Cabo Verde, Gabon, Ghana, Guinea, Gambia, The, Kenya, Liberia, Lesotho, Morocco, Madagas... [Dataset]. https://microdata.worldbank.org/index.php/catalog/3805
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    University of Cape Town (UCT, South Africa)
    Institute for Development Studies (IDS)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    Time period covered
    2016 - 2018
    Area covered
    Ghana, Cameroon, Benin, Burkina Faso, Guinea, Gabon, Liberia, Cabo Verde, Lesotho, Botswana
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, and Round 6 (2014-2015) 36 countries. The survey covered 34 countries in Round 7 (2016-2018).

    Geographic coverage

    The survey has national coverage in the following 34 African countries: Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, São Tomé and Príncipe, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire for Round 7 addressed country-specific issues, but many of the same questions were asked across surveys. The survey instruments were not standardized across all countries and the following features should be noted:

    • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires.

    • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed.

    • Response options also varied on some questions, and where applicable, these differences are also noted.

  12. a

    Digital Earth Africa's Cropland extents for Africa

    • deafrica.africageoportal.com
    • agriculture.africageoportal.com
    • +4more
    Updated Jan 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2022). Digital Earth Africa's Cropland extents for Africa [Dataset]. https://deafrica.africageoportal.com/datasets/bc6a9440f3cb41d6904b2c8831745903
    Explore at:
    Dataset updated
    Jan 13, 2022
    Dataset authored and provided by
    Africa GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    A central focus for governing bodies in Africa is the need to secure the necessary food sources to support their populations. It has been estimated that the current production of crops will need to double by 2050 to meet future needs for food production. Higher level crop-based products that can assist with managing food insecurity, such as cropping watering intensities, crop types, or crop productivity, require as a starting point precise and accurate cropland extent maps indicating where cropland occurs. Current cropland extent maps are either inaccurate, have coarse spatial resolutions, or are not updated regularly. An accurate, high-resolution, and regularly updated cropland area map for the African continent is therefore recognised as a gap in the current crop monitoring services. Key PropertiesGeographic Coverage: Continental Africa - approximately 37° North to 35 SouthTemporal Coverage: 2019Spatial Resolution: 10 x 10 meterUpdate Frequency: TBDNumber of Bands: 3 BandsParent Dataset: Digital Earth Africa's Sentinel-2 Semiannual GeoMADSource Data Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)Service Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)

    Digital Earth Africa’s cropland extent maps for Eastern, Western, and Northern Africa show the estimated location of croplands in these countries for the period of January to December 2019:

    Eastern: Tanzania, Kenya, Uganda, Ethiopia, Rwanda and BurundiWestern: Nigeria, Benin, Togo, Ghana, Cote d'Ivoire, Liberia, Sierra Leone, Guinea and Guinea-BissauNorthern: Morocco, Algeria, Tunisia, Libya and EgyptSahel: Mauritania, Senegal, Gambia, Mali, Burkina Faso, Niger, Chad, Sudan, South Sudan, Somalia and DjiboutiSouthern: South Africa, Namibia, Botswana, Lesotho and Eswatini

    Cropland is defined as:

    "a piece of land of minimum 0.01 ha (a single 10m x 10m pixel) that is sowed/planted and harvestable at least once within the 12 months after the sowing/planting date."

    This definition will exclude non-planted grazing lands and perennial crops which can be difficult for satellite imagery to differentiate from natural vegetation.

    The provisional cropland extent maps have a resolution of 10 metres and were built using Copernicus Sentinel-2 satellite images from 2019. The cropland extent maps were built separately using extensive training data from Eastern, Western, and Northern Africa, coupled with a Random Forest machine learning model. A detailed exploration of the methods used to produce the cropland extent map can be found in the Jupyter Notebooks in DE Africa’s crop-mask GitHub repository.

    Independent validation datasets suggest the following accuracies:

    The Eastern Africa cropland extent map has an overall accuracy of 90.3 %, and an f-score of 0.85 The Western Africa cropland extent map has an overall accuracy of 83.6 %, and an f-score of 0.75 The Northern Africa cropland extent map has an overall accuracy of 94.0 %, and an f-score of 0.91The Sahel Africa cropland extent map has an overall accuracy of 87.9 %, and an f-score of 0.78The Southern Africa cropland extent map has an overall accuracy of 86.4 %, and an f-score of 0.75

    The algorithms for all regions tend to report more omission errors (labelling actual crops as non-crops) than commission errors (labelling non-crops as crops). Where commission errors occur, they tend to be focussed around wetlands and seasonal grasslands which spectrally resemble some kinds of cropping.

    Available BandsBand IDDescriptionValue rangeData typeNoData/Fill valuemaskcrop extent (pixel)0 - 1uint80probcrop probability (pixel)0 - 100uint80filteredcrop extent (object-based)0 - 1uint80

    mask: This band displays cropped regions as a binary map. Values of 1 indicate the presence of crops, while a value of 0 indicates the absence of cropping. This band is a pixel-based cropland extent map, meaning the map displays the raw output of the pixel-based Random Forest classification.

    prob: This band displays the prediction probabilities for the ‘crop’ class. As this service uses a random forest classifier, the prediction probabilities refer to the percentage of trees that voted for the random forest classification. For example, if the model had 200 decision trees in the random forest, and 150 of the trees voted ‘crop’, the prediction probability is 150 / 200 x 100 = 75 %. Thresholding this band at > 50 % will produce a map identical to mask.

    filtered: This band displays cropped regions as a binary map. Values of 1 indicate the presence of crops, while a value of 0 indicates the absence of cropping. This band is an object-based cropland extent map where the mask band has been filtered using an image segmentation algorithm (see this paper for details on the algorithm used). During this process, segments smaller than 1 Ha (100 10m x 10m pixels) are merged with neighbouring segments, resulting in a map where the smallest classified region is 1 Ha in size. The filtered dataset is provided as a complement to the mask band; small commission errors are removed by object-based filtering, and the ‘salt and pepper’ effect typical of classifying pixels is diminished.

    More details on this dataset can be found here.

  13. n

    Data from: Genetic diversity and spread dynamics of SARS-CoV-2 variants...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Desire Mtetwa (2024). Genetic diversity and spread dynamics of SARS-CoV-2 variants present in African populations [Dataset]. http://doi.org/10.5061/dryad.1c59zw42d
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2024
    Dataset provided by
    Chinhoyi University of Technology
    Authors
    Desire Mtetwa
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The dynamics of coronavirus disease-19 (COVID-19) have been extensively researched in many settings around the world, but little is known about these patterns in Africa. 7540 complete nucleotide genomes from 51 African nations were obtained and analysed from the National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Influenza Data (GISAID) databases to examine genetic diversity and spread dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) lineages circulating in Africa. Utilising a variety of clade and lineage nomenclature schemes, we looked at their diversity, and used maximum parsimony inference methods to recreate their evolutionary divergence and history. According to this study, only 465 of the 2610 Pango lineages found to have existed in the world circulated in Africa after three years of the COVID-19 pandemic outbreak, with five different lineages dominating at various points during the outbreak. We identified South Africa, Kenya, and Nigeria as key sources of viral transmissions between Sub-Saharan African nations. These findings provide insight into the viral strains that are circulating in Africa and their evolutionary patterns. Methods Dataset mining and workflow SARS-CoV-2 genome sequences collected from Africa were obtained from NCBI database and GISAID database on February 26, 2023. 24415 African sequences were retrieved from both databases so as to examine the number of lineages circulating within Africa. The two databases had only 8044 complete genome sequences combined from Africa, and these sequences excluding those with low coverage using NextClade were retrieved to determine spread dynamics. 5908 sequences from 23 African countries were available in the NCBI and 2137 sequences from 41 African countries from GISAID database. The sequences were aligned using the online version of the MAFFT multiple sequence alignment tool, with the Wuhan-Hu-1 (MN 908947.3) as the reference sequence, and sequences with more than 5.0% ambiguous letters were removed. Duplicates were removed using goalign dedup software and only high quality African complete sequences remained (n=7540). Phylogenetic reconstruction Using IQ-TREE multicore software version v1.6.12 and NextClade, phylogeny reconstruction on the dataset was performed numerous times. Lineage classification PANGOLin, a web application was used to classify sequences into their lineages. The objective was to determine the SARS-CoV-2 lineages that are circulating in Africa that are most important from an epidemiological perspective, as well as the lineage dynamics within and across the African continent, due to the fact that this naming system integrates genetic and geographic data concerning SARS-CoV-2 dynamics. Phylogeographic reconstruction VOC, (VOI) and VUM were designated based on the WHO framework as of 20 January 2022. We included one lineage, namely A.23.1 and labelled it as VOI for the purposes of this analysis. This lineage was included because it demonstrated the continued evolution of African lineages into potentially more transmissible variants. VOI, VOC, and VUM that emerged on the African continent were marked. These were A.23.1 (VOI), B.1.351 and B.1.1.529 (VOC), B.1.640, and B.1.525 (VUM). Genome sequences of these five lineages were extracted from NCBI database for phylogeographic reconstruction. A similar approach to that described above (including alignment using online MAFFT) was employed. Phylogeographic reconstruction for all variants circulating in Africa and all VOI, VOC, and VUM was conducted using PASTML.

  14. o

    Civic Society Participation, 2021 for select African countries - Dataset -...

    • open.africa
    Updated Apr 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Civic Society Participation, 2021 for select African countries - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/civic-society-participation-2021-for-select-african-countries
    Explore at:
    Dataset updated
    Apr 11, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Based on the expert assessments and index by V-Dem. It combines information on the extent to which citizens are active in diverse organizations which choose and influence policy-makers. It ranges from 0 to 1 (most active).

  15. W

    Central African Republic: High Resolution Population Density Maps +...

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    zipped csv +1
    Updated Jul 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2019). Central African Republic: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://cloud.csiss.gmu.edu/uddi/fr/dataset/highresolutionpopulationdensitymaps-caf
    Explore at:
    zipped csv(1840602), zipped csv(1844059), zipped csv(1841062), zipped csv(1840319), zipped geotiff(1294241), zipped geotiff(1292243), zipped geotiff(1293726), zipped csv(1490739), zipped geotiff(1294144), zipped csv(1836673), zipped csv(1843285), zipped geotiff(1292786), zipped geotiff(1294296), zipped geotiff(1291755)Available download formats
    Dataset updated
    Jul 23, 2019
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Central African Republic
    Description

    The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.

    There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889

Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe

Explore at:
Dataset updated
Apr 27, 2021
Dataset provided by
Institute for Democracy in South Africa (IDASA)
Michigan State University (MSU)
Ghana Centre for Democratic Development (CDD-Ghana)
Time period covered
1999 - 2000
Area covered
Africa, Malawi, Lesotho, Zambia, Botswana, Zimbabwe, Namibia, South Africa
Description

Abstract

Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

Geographic coverage

Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

Analysis unit

Basic units of analysis that the study investigates include: individuals and groups

Kind of data

Sample survey data [ssd]

Sampling procedure

A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

Sample Universe

The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

Sample Design

The sample design is a clustered, stratified, multi-stage, area probability sample.

To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

A first-stage to stratify and randomly select primary sampling units;

A second-stage to randomly select sampling start-points;

A third stage to randomly choose households;

A final-stage involving the random selection of individual respondents

We shall deal with each of these stages in turn.

STAGE ONE: Selection of Primary Sampling Units (PSUs)

The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

Search
Clear search
Close search
Google apps
Main menu