Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data was reported at 9,349.300 Head th in 2025. This records an increase from the previous number of 9,346.800 Head th for 2024. United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data is updated yearly, averaging 9,349.300 Head th from Dec 1926 (Median) to 2025, with 17 observations. The data reached an all-time high of 9,450.400 Head th in 2021 and a record low of 9,208.600 Head th in 2014. United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data remains active status in CEIC and is reported by Economic Research Service. The data is categorized under Global Database’s United States – Table US.RI018: Cattle Inventory.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems. From October 2010 to October 2015, dairy heifers were placed onto experimental barnyards for approximately 7-day periods four times per year, generally in mid-spring, late-spring / early summer, mid-to-late summer and early-to-mid autumn. Heifers were fed once per day from total mixed rations consisting mostly of corn (maize) and alfalfa silages. Feed offered and feed refused were both weighed and analyzed for total nitrogen (N), carbon (C), phosphorus (P) and cell wall components (neutral detergent fiber, NDF). Leachate was pumped out of plots frequently enough to prevent saturation of surface materials and potential anaerobic conditions. Leachate was also pumped out the day before any gas flux measurements. Leachate total volume and nitrogen species were measured, and from “soil” barnyards the runoff was also measured. The starting bulk density, pH, total carbon (C) and total N of barnyard surface materials were analyzed. Decomposed bark in barnyards was replaced with new bark in 2013, before the spring flux measurements. Please note: the data presented here includes observations made in 2015; the original paper included observations through 2014 only. Gas fluxes (carbon dioxide, CO2; methane, CH4; ammonia, NH3; and nitrous oxide, N2O) were measured during the two days before heifers were corralled in barnyards, and during the two days after heifers were moved off the barnyards. During the first day of each two-day measurement period, gas fluxes were measured at two randomly selected locations within each barnyard. Each location was sampled once in the morning and once in the afternoon. During the second day, this procedure was repeated with two new randomly selected locations in each barnyard. This experiment was partially funded by a project called “Climate Change Mitigation and Adaptation in Dairy Production Systems of the Great Lakes Region,” also known as the Dairy Coordinated Agricultural Project (Dairy CAP). The Dairy CAP is funded by the United States Department of Agriculture - National Institute of Food and Agriculture (award number 2013-68002-20525). The main goal of the Dairy CAP is to improve understanding of the magnitudes and controlling factors over GHG emissions from dairy production in the Great Lakes region. Using this knowledge, the Dairy CAP is improving life cycle analysis (LCA) of GHG production by Great Lakes dairy farms, developing farm management tools, and conducting extension, education and outreach activities. Resources in this dataset:Resource Title: Data_dictionary_DairyCAP_Barnyards. File Name: BYD_Data_Dictionary.xlsxResource Description: This is the data dictionary for the data from the paper "Gas emissions from dairy barnyards" by Mark Powell and Peter Vadas. Resource Software Recommended: Microsoft Excel 2016,url: https://products.office.com/en-us/excel Resource Title: DairyCAP_Barnyards. File Name: BYD_Project_Data.xlsxResource Description: This is the complete data from the paper: Powell, J. M. & Vadas, P. A. (2016). Gas emissions from dairy barnyards. Animal Production Science, 56, 355-361. Data are separated into separate spreadsheet tabs.Resource Software Recommended: Microsoft Excel 2016,url: https://products.office.com/en-us/excel Resource Title: Data_dictionary_DairyCAP_Barnyards. File Name: Data_Dictionary_BYD.csvResource Description: This is the data dictionary for the data from the paper "Gas emissions from dairy barnyards" by Mark Powell and Peter Vadas. Resource Title: GHG Data. File Name: BYD_GHG.csvResource Description: Greenhouse gas flux dataResource Title: Intake Data. File Name: BYD_Intake.csvResource Title: Leachate Data. File Name: BYD_Leachate.csvResource Title: Runoff Data. File Name: BYD_Runoff.csvResource Title: Surface Data. File Name: BYD_Surface.csvResource Title: TMR Data. File Name: BYD_TMR.csvResource Description: Total mixed ration data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Livestock: Number: Cow data was reported at 105,085.102 Unit th in 2023. This records an increase from the previous number of 102,158.520 Unit th for 2022. China Livestock: Number: Cow data is updated yearly, averaging 103,974.569 Unit th from Dec 1989 (Median) to 2023, with 35 observations. The data reached an all-time high of 132,060.000 Unit th in 1995 and a record low of 88,344.899 Unit th in 2016. China Livestock: Number: Cow data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Agriculture Sector – Table CN.RID: Number of Livestock: Large Animals: Cow .
Washington State Department of Agriculture regulates dairy farm compliance with state water quality and food safety law. This includes regular inspections of dairy production fields and facilities. The milking facilities, which generally represent the heart of the operation, are mapped for internal and public use.This dataset includes all active cow dairy milking facilities. The data are updated quarterly. The dataset includes information about the spatial distribution of dairies in Washington State and information about each business itself. Pursuant to WAC 16-06-210, some information is expressed in ranges to meet non-disclosure requirements.The following is a description of the attributes included with the WA Dairies dataset:
Field
Description
AG ID
The agency given identification number assigned at the initial licensing of the dairy.
Facility Size
This is a general summary of the farm size. For DNMP purposes, size is determined by mature (milking + dry) animal numbers; with a dairy herd of up to 199 animals being a Small, 200-699 being medium, and 700 or greater being Large.
Business Name
The name which appears on the milking license.
Site Address
The street address of the farm milking facility (not the business mailing address).
Site City
The city wherein lies the milking facility.
County
The county wherein lies the milking facility.
DNMP Region
The Dairy Nutrient Management Program Region wherein lies the milking facility.
CAFO Status
This field denotes whether or not the dairy milking license has an associated Confined Animal Feeding Operation (CAFO) permit.
CAFO ID
The permit identification number for the associated dairy.
Range Current Acres
The current and approximate acreage of land application or farming production land associated with the dairy.
Range Current Milking
The current and approximate number of milking animals currently in rotation.
Range Current Dry
The current and approximate number of mature dry animals currently in rotation.
Range Current Heifers
The current and approximate number of heifers (ages 6 months old to fresh) currently in rotation.
Range Current Calves
The current and approximate number of calves (ages 0 to 6 months) currently in rotation.
Latitude (WGS84)
Latitude Datum World Geodetic System 1984
Longitude (WGS84)
Longitude Datum World Geodetic System 1984
WRIA
The Water Resources Inventory Area (WRIA) wherein lies the milking facility.
Conservation District
The Conservation District serving the dairy business.
DNMA Status
Indicates whether the dairy is currently licensed and is regulated under food safety laws and dairy nutrient management act requirements.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Live Cattle rose to 222.20 USd/Lbs on July 11, 2025, up 1.36% from the previous day. Over the past month, Live Cattle's price has fallen 2.65%, but it is still 21.79% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Live Cattle - values, historical data, forecasts and news - updated on July of 2025.
Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,776 observations with 37 variables; Profiles Layer Field = 1,493 observations with 64 variables; Profiles Layer Lab= 1,386 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template (adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Bilateral Ethiopian-Netherlands Effort for Food, Income and Trade (BENEFIT) Partnership which is a portfolio of five programs (ISSD, Cascape, ENTAG, SBN, and REALISE) and is funded by the government of the Kingdom of Netherlands through its embassy in Addis Ababa. The BENEFIT-REALISE program implements its interventions in 60 PSNP weredas in four regions (Tigray, Amhara, Oromia, and SNNPR).Accordingly, in 2019, BENEFIT-REALISE along with the MoA initiated a wereda-wide soil resource characterization and mapping task at1:50,000 scale in 15 BENEFIT-REALISE intervention weredas: 3 of Tigray, 6 of Amhara, 3 of Oromia, and 3 of SNNPR. Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. 10.13140/RG.2.2.31759.41123. Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b.
TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.
By Correlates of War Project [source]
The World Religion Project (WRP) is an ambitious endeavor to conduct a comprehensive analysis of religious adherence throughout the world from 1945 to 2010. This cutting-edge project offers unparalleled insight into the religious behavior of people in different countries, regions, and continents during this time period. Its datasets provide important information about the numbers and percentages of adherents across a multitude of different religions, religion families, and non-religious affiliations.
The WRP consists of three distinct datasets: the national religion dataset, regional religion dataset, and global religion dataset. Each is focused on understanding individually specific realms for varied analysis approaches - from individual states to global systems. The national dataset provides data on number of adherents by state as well as percentage population practicing a given faith group in five-year increments; focusing attention to how this number evolves from nation to nation over time. Similarly, regional data is provided at five year intervals highlighting individual region designations with one modification – Pacific Ocean states have been reclassified into their own Oceania category according to Country Code Number 900 or above). Finally at a global level – all states are aggregated in order that we may understand a snapshot view at any five-year interval between 1945‐2010 regarding relationships between religions or religio‐families within one location or transnationally.
This project was developed in three stages: firstly forming a religions tree (a systematic classification), secondly collecting data such as this provided by WRP according to that classification structure – lastly cleaning the data so discrepancies may be reconciled and imported where needed with gaps selected when unknown values were encountered during collection process . We would encourage anyone wishing details undergoing more detailed reading/analysis relating various use applications for these rich datasets - please contact Zeev Maoz (University California Davis) & Errol A Henderson _(Pennsylvania State University)
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
The World Religions Project (WRP) dataset offers a comprehensive look at religious adherence around the world within a single dataset. With this dataset, you can track global religious trends over a period of 65 years and explore how they’ve changed during that time. By exploring the WRP data set, you’ll gain insight into cross-regional and cross-time patterns in religious affiliation around the world.
- Analyzing historical patterns of religious growth and decline across different regions
- Creating visualizations to compare religious adherence in various states, countries, or globally
- Studying the impact of governmental policies on religious participation over time
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: WRP regional data.csv | Column name | Description | |:-----------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------| | Year | Reference year for data collection. (Integer) | | Region | World region according to Correlates Of War (COW) Regional Systemizations with one modification (Oceania category for COW country code ...
Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,842 observations with 37 variables; Profiles Layer Field = 6,365 observations with 64 variables; Profiles Layer Lab= 4,575 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template, adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Africa Soil Profile Database (Leenaars et al, 2014): The existing accessible compiled legacy soil profile database of Ethiopia prepared by the Africa soil profile database consisted of 1,842 legacy soil profile observations (Batjas et al., 2020; Leenaars et al., 2014).
Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. https://hdl.handle.net/10568/110868 Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b. TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundBovine viral diarrhea is one of the diseases that cause huge economic losses in animal husbandry. Many countries or regions have successively introduced eradication plans, but BVDV still has a high prevalence in the world. This meta-analysis aims to investigate the prevalence and risk factors of BVDV in the world in recent 10 years, and is expected to provide some reference and theoretical basis for BVDV control plans in different regions.MethodRelevant articles published from 2010 to 2021 were mainly retrieved from NCBI, ScienceDirect, Chongqing VIP, Chinese web of knowledge (CNKI), web of science and Wanfang databases.Results128 data were used to analyze the prevalence of BVDV from 2010 to 2021. BVDV antigen prevalence rate is 15.74% (95% CI: 11.35–20.68), antibody prevalence rate is 42.77% (95% CI: 37.01–48.63). In the two databases of antigen and antibody, regions, sampling time, samples, detection methods, species, health status, age, sex, breeding mode, and seasonal subgroups were discussed and analyzed, respectively. In the antigen database, the prevalence of dairy cows in the breed subgroup, ELISA in the detection method subgroup, ear tissue in the sample subgroup, and extensive breeding in the breeding mode were the lowest, with significant differences. In the antibody database, the prevalence rate of dairy cows in the breed subgroup and intensive farming was the highest, with a significant difference. The subgroups in the remaining two databases were not significantly different.ConclusionThis meta-analysis determined the prevalence of BVDV in global cattle herds from 2010 to 2021. The prevalence of BVDV varies from region to region, and the situation is still not optimistic. In daily feeding, we should pay attention to the rigorous and comprehensive management to minimize the spread of virus. The government should enforce BVDV prevention and control, implement control or eradication policies according to local conditions, and adjust the policies in time.
Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,659 observations with 37 variables; Profiles Layer Field = 2,373 observations with 64 variables; Profiles Layer Lab= 2,373 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template , adapted from Batjes 2022; Leenaars et al, 2014, from the below source: Ministry of Agriculture (MOA) Sustainable Land Management (SLM) program watershed-based soil profile data. Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. https://hdl.handle.net/10568/110868 Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data was reported at 9,349.300 Head th in 2025. This records an increase from the previous number of 9,346.800 Head th for 2024. United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data is updated yearly, averaging 9,349.300 Head th from Dec 1926 (Median) to 2025, with 17 observations. The data reached an all-time high of 9,450.400 Head th in 2021 and a record low of 9,208.600 Head th in 2014. United States Cattle Inventory: Cattle & Calves: Cows & Heifers That Have Calved: At the Beginning of the Yr: Milk Cows data remains active status in CEIC and is reported by Economic Research Service. The data is categorized under Global Database’s United States – Table US.RI018: Cattle Inventory.