***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.
This table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.
Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This dataset reflects incidents of crime in the City of Los Angeles from 2010 - 2019. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.
The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).
The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)
predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18
http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized
U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),
U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)
U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)
U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.
However, I would like to try and answer the following questions answered.
Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities
How has unemployment changed crime rate(violent and non-violent) in the communities?
Were people from a particular age group more vulnerable to crime?
Does ethnicity play a role in crime rate?
Has education played a role in bringing down the crime rate?
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://bit.ly/rk5Tpc.
For the latest data tables see ‘Police recorded crime and outcomes open data tables’.
These historic data tables contain figures up to September 2024 for:
There are counting rules for recorded crime to help to ensure that crimes are recorded consistently and accurately.
These tables are designed to have many uses. The Home Office would like to hear from any users who have developed applications for these data tables and any suggestions for future releases. Please contact the Crime Analysis team at crimeandpolicestats@homeoffice.gov.uk.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Approximately 10 people are shot on an average day in Chicago.
http://www.chicagotribune.com/news/data/ct-shooting-victims-map-charts-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-chicago-homicides-data-tracker-htmlstory.html http://www.chicagotribune.com/news/local/breaking/ct-homicide-victims-2017-htmlstory.html
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. This data includes unverified reports supplied to the Police Department. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time.
Update Frequency: Daily
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:chicago_crime
https://cloud.google.com/bigquery/public-data/chicago-crime-data
Dataset Source: City of Chicago
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source —https://data.cityofchicago.org — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Ferdinand Stohr from Unplash.
What categories of crime exhibited the greatest year-over-year increase between 2015 and 2016?
Which month generally has the greatest number of motor vehicle thefts?
How does temperature affect the incident rate of violent crime (assault or battery)?
https://cloud.google.com/bigquery/images/chicago-scatter.png" alt="">
https://cloud.google.com/bigquery/images/chicago-scatter.png
This dataset includes all valid felony, misdemeanor, and violation crimes reported to the New York City Police Department (NYPD) for all complete quarters so far this year (2017). For additional details, please see the attached data dictionary in the ‘About’ section.
https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms
This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.
The UNIFORM CRIME REPORTING PROGRAM DATA: OFFENSES KNOWN AND CLEARANCES BY ARREST, 2014 dataset is a compilation of offenses reported to law enforcement agencies in the United States. Due to the vast number of categories of crime committed in the United States, the FBI has limited the type of crimes included in this compilation to those crimes which people are most likely to report to police and those crimes which occur frequently enough to be analyzed across time. Crimes included are criminal homicide, forcible rape, robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft. Much information about these crimes is provided in this dataset. The number of times an offense has been reported, the number of reported offenses that have been cleared by arrests, and the number of cleared offenses which involved offenders under the age of 18 are the major items of information collected.
https://www.icpsr.umich.edu/web/ICPSR/studies/36366/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36366/terms
These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. The study includes data collected with the purpose of creating an integrated dataset that would allow researchers to address significant, policy-relevant gaps in the literature--those that are best answered with cross-jurisdictional data representing a wide array of economic and social factors. The research addressed five research questions: What is the impact of gentrification and suburban diversification on crime within and across jurisdictional boundaries? How does crime cluster along and around transportation networks and hubs in relation to other characteristics of the social and physical environment? What is the distribution of criminal justice-supervised populations in relation to services they must access to fulfill their conditions of supervision? What are the relationships among offenders, victims, and crimes across jurisdictional boundaries? What is the increased predictive power of simulation models that employ cross-jurisdictional data?
This project examined different aspects of campus crime -- specifically, the prevalence of crimes among college students, whether the crime rate was increasing or decreasing on college campuses, and the factors related to campus crime. Researchers made the assumption that crimes committed by and against college students were likely to be related to drug and alcohol use. Specific questions designed to be answered by the data include: (1) Do students who commit crimes differ in their use of drugs and alcohol from students who do not commit crimes? (2) Do students who are victims of crimes differ in their use of drugs and alcohol from students who are not victims? (3) How do multiple offenders differ from single offenders in their use of drugs and alcohol? (4) How do victims of violent crimes differ from victims of nonviolent crimes in their use of drugs and alcohol? (5) What types of student crimes are more strongly related to drug or alcohol use than others? (6) Other than drug and alcohol use, in what ways can victims and perpetrators of crimes be differentiated from students who have had no direct experiences with crime? Variables include basic demographic information, academic information, drug use information, and experiences with crime since becoming a student.
In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.
This dataset was kindly made available by the City of Baltimore. You can find the original dataset, which is updated regularly, here.
The UCF-Crime dataset is a large-scale dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies including Abuse, Arrest, Arson, Assault, Road Accident, Burglary, Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism. These anomalies are selected because they have a significant impact on public safety.
This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities.
This dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Suburb-based crime statistics for crimes against the person and crimes against property. The Crime statistics datasets contain all offences against the person and property that were reported to police in that respective financial year. The Family and Domestic Abuse-related offences datasets are a subset of this, in that a separate file is presented for these offences that were flagged as being of a family and domestic abuse nature for that financial year. Consequently the two files for the same financial year must not be added together.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at PSITAdministration@ChicagoPolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data are updated daily. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
This dataset contains aggregate data on violent index victimizations at the quarter level of each year (i.e., January – March, April – June, July – September, October – December), from 2001 to the present (1991 to present for Homicides), with a focus on those related to gun violence. Index crimes are 10 crime types selected by the FBI (codes 1-4) for special focus due to their seriousness and frequency. This dataset includes only those index crimes that involve bodily harm or the threat of bodily harm and are reported to the Chicago Police Department (CPD). Each row is aggregated up to victimization type, age group, sex, race, and whether the victimization was domestic-related. Aggregating at the quarter level provides large enough blocks of incidents to protect anonymity while allowing the end user to observe inter-year and intra-year variation. Any row where there were fewer than three incidents during a given quarter has been deleted to help prevent re-identification of victims. For example, if there were three domestic criminal sexual assaults during January to March 2020, all victims associated with those incidents have been removed from this dataset. Human trafficking victimizations have been aggregated separately due to the extremely small number of victimizations.
This dataset includes a " GUNSHOT_INJURY_I " column to indicate whether the victimization involved a shooting, showing either Yes ("Y"), No ("N"), or Unknown ("UKNOWN.") For homicides, injury descriptions are available dating back to 1991, so the "shooting" column will read either "Y" or "N" to indicate whether the homicide was a fatal shooting or not. For non-fatal shootings, data is only available as of 2010. As a result, for any non-fatal shootings that occurred from 2010 to the present, the shooting column will read as “Y.” Non-fatal shooting victims will not be included in this dataset prior to 2010; they will be included in the authorized dataset, but with "UNKNOWN" in the shooting column.
The dataset is refreshed daily, but excludes the most recent complete day to allow CPD time to gather the best available information. Each time the dataset is refreshed, records can change as CPD learns more about each victimization, especially those victimizations that are most recent. The data on the Mayor's Office Violence Reduction Dashboard is updated daily with an approximately 48-hour lag. As cases are passed from the initial reporting officer to the investigating detectives, some recorded data about incidents and victimizations may change once additional information arises. Regularly updated datasets on the City's public portal may change to reflect new or corrected information.
How does this dataset classify victims?
The methodology by which this dataset classifies victims of violent crime differs by victimization type:
Homicide and non-fatal shooting victims: A victimization is considered a homicide victimization or non-fatal shooting victimization depending on its presence in CPD's homicide victims data table or its shooting victims data table. A victimization is considered a homicide only if it is present in CPD's homicide data table, while a victimization is considered a non-fatal shooting only if it is present in CPD's shooting data tables and absent from CPD's homicide data table.
To determine the IUCR code of homicide and non-fatal shooting victimizations, we defer to the incident IUCR code available in CPD's Crimes, 2001-present dataset (available on the City's open data portal). If the IUCR code in CPD's Crimes dataset is inconsistent with the homicide/non-fatal shooting categorization, we defer to CPD's Victims dataset.
For a criminal homicide, the only sensible IUCR codes are 0110 (first-degree murder) or 0130 (second-degree murder). For a non-fatal shooting, a sensible IUCR code must signify a criminal sexual assault, a robbery, or, most commonly, an aggravated battery. In rare instances, the IUCR code in CPD's Crimes and Victims dataset do not align with the homicide/non-fatal shooting categorization:
Other violent crime victims: For other violent crime types, we refer to the IUCR classification that exists in CPD's victim table, with only one exception:
Note: All businesses identified as victims in CPD data have been removed from this dataset.
Note: The definition of “homicide” (shooting or otherwise) does not include justifiable homicide or involuntary manslaughter. This dataset also excludes any cases that CPD considers to be “unfounded” or “noncriminal.”
Note: In some instances, the police department's raw incident-level data and victim-level data that were inputs into this dataset do not align on the type of crime that occurred. In those instances, this dataset attempts to correct mismatches between incident and victim specific crime types. When it is not possible to determine which victims are associated with the most recent crime determination, the dataset will show empty cells in the respective demographic fields (age, sex, race, etc.).
Note: The initial reporting officer usually asks victims to report demographic data. If victims are unable to recall, the reporting officer will use their best judgment. “Unknown” can be reported if it is truly unknown.
***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.