17 datasets found
  1. Top 3000+ Cryptocurrency Dataset

    • kaggle.com
    zip
    Updated Apr 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2023). Top 3000+ Cryptocurrency Dataset [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cryptocurrency-dataset-2021-395-types-of-crypto
    Explore at:
    zip(115000 bytes)Available download formats
    Dataset updated
    Apr 9, 2023
    Authors
    Sourav Banerjee
    Description

    Context

    A cryptocurrency, crypto-currency, or crypto is a collection of binary data which is designed to work as a medium of exchange. Individual coin ownership records are stored in a ledger, which is a computerized database using strong cryptography to secure transaction records, to control the creation of additional coins, and to verify the transfer of coin ownership. Cryptocurrencies are generally fiat currencies, as they are not backed by or convertible into a commodity. Some crypto schemes use validators to maintain the cryptocurrency. In a proof-of-stake model, owners put up their tokens as collateral. In return, they get authority over the token in proportion to the amount they stake. Generally, these token stakes get additional ownership in the token overtime via network fees, newly minted tokens, or other such reward mechanisms.

    Cryptocurrency does not exist in physical form (like paper money) and is typically not issued by a central authority. Cryptocurrencies typically use decentralized control as opposed to a central bank digital currency (CBDC). When a cryptocurrency is minted or created prior to issuance or issued by a single issuer, it is generally considered centralized. When implemented with decentralized control, each cryptocurrency works through distributed ledger technology, typically a blockchain, that serves as a public financial transaction database

    A cryptocurrency is a tradable digital asset or digital form of money, built on blockchain technology that only exists online. Cryptocurrencies use encryption to authenticate and protect transactions, hence their name. There are currently over a thousand different cryptocurrencies in the world, and many see them as the key to a fairer future economy.

    Bitcoin, first released as open-source software in 2009, is the first decentralized cryptocurrency. Since the release of bitcoin, many other cryptocurrencies have been created.

    Content

    This Dataset is a collection of records of 3000+ Different Cryptocurrencies. * Top 395+ from 2021 * Top 3000+ from 2023

    Structure of the Dataset

    https://i.imgur.com/qGVJaHl.png" alt="">

    Acknowledgements

    This Data is collected from: https://finance.yahoo.com/. If you want to learn more, you can visit the Website.

    Cover Photo by Worldspectrum: https://www.pexels.com/photo/ripple-etehereum-and-bitcoin-and-micro-sdhc-card-844124/

  2. Fall of FTX

    • kaggle.com
    zip
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manas Parashar (2022). Fall of FTX [Dataset]. https://www.kaggle.com/datasets/parasharmanas/fall-of-ftx
    Explore at:
    zip(30248 bytes)Available download formats
    Dataset updated
    Dec 1, 2022
    Authors
    Manas Parashar
    Description

    Cryptocurrency enjoyed a prosperous year in 2021 as the asset class enjoyed record returns. In 2021, the crypto industry's total market capitalization grew by 187.5%, peaking at around US$3 trillion, with many of the top coins offering four-digit and even five-digit percentage returns. The value of Bitcoin peaked at almost US$65,000 in mid-April 2021 before falling to US$30,000 by June 2021. Today, over 20,000 different cryptocurrencies exist, with some having little to no following while others enjoy immense popularity, like Bitcoin and Ethereum. The tide turned however as the year came to an end as many economies grappled with numerous macroeconomic headwinds. Financial markets were negatively impacted by these headwinds with both stocks and fixed-income assets struggling. Cryptocurrency would not be spared, leading crypto assets like Bitcoin and Ethereum down as much as 50% in the first half of 2022. Market experts speculate that cryptocurrency may fall even lower by year-end 2022 given the uncertainty that has recently plagued the industry following the collapse of one of the largest cryptocurrency exchanges.

    The Fall of FTX Prior to November 2022, FTX was recognized as one of the largest cryptocurrency exchanges in the world, gaining immense popularity during its short existence. The exchange was founded in 2019 with Sam Bankman-Fried co-founding and being the largest stakeholder in the company from inception. Mr Bankman-Fried also co-founded Alameda Research 2017, a quantitative cryptocurrency trading firm.
    FTX enjoyed a meteoric rise, peaking in 2021 as the company’s valuation reached US$32 billion. The exchange also issued its own cryptocurrency token called FTT. At its peak in 2021, the exchange had over 1 million users and was the third largest crypto exchange by volume with its token FTT reaching a market cap of $9.39 billion. In 2022, as crypto assets struggled, the FTX exchange stood as one of the brighter lights in the sector. As other cryptocurrency exchanges were challenged on many fronts including bankruptcy earlier in the year, the majority owner of FTX came to the rescue offering financial support to several companies including Robinhood and Voyager. Sam Bankman-Fried would soon gain the nickname “Crypto’s White Knight”. FTX's downfall began when CoinDesk, a news site specializing in bitcoin and digital currencies, released a statement on November 2 2022 revealing that Alameda Research Trading firm was heavily invested in FTT, FTX’s own cryptocurrency, which represented around 40% of the trading firm’s asset holdings. This news put Sam in the spotlight and sparked widespread selloffs in digital assets. The story exposed the depth and complexity of the relationship between FTX and Alameda Research, including that FTX was lending significant quantities of its own token FTT to the trading firm to build up the cash levels. Although the company attempted damage control through public reassurances to its customers, it failed to prevent customers from withdrawing their funds. Four days later on November 6 2022, Binance, the world’s largest crypto exchange announced their decision to sell their entire holdings of the FTT tokens worth approximately US$529 million. Binance’s decision to liquidate its position in FTT was based on a risk management strategy following the collapse of the Terra (LUNA) crypto token earlier in 2022. Subsequent to this announcement, withdrawal requests began to rise rapidly and two days later, FTX was faced with a liquidity crisis and stopped paying back customers. While a bail-out was initially offered by Binance, it was rescinded after the necessary due diligence. As a result, eight days after the story broke, on November 11 2022 the company, FTX filed for bankruptcy.

  3. Comprehensive dataset of all crypto coins (merged)

    • kaggle.com
    zip
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kartik Raina (2021). Comprehensive dataset of all crypto coins (merged) [Dataset]. https://www.kaggle.com/datasets/kartikraina/comprehensive-dataset-of-all-crypto-coins-merged
    Explore at:
    zip(1334282 bytes)Available download formats
    Dataset updated
    Nov 19, 2021
    Authors
    Kartik Raina
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    There are no null values or empty columns, and all the data added is correct. The dataset contains opening and closing values of cryptocurrencies, along with their market cap, volume trade, and highest and lowest points on each day, all the way up till 2021.

    The datasets exist individually but don't have a combined version for the latest year, so I merged them and have added them here.

    The dataset contains opening and closing values of cryptocurrencies, along with their market cap, volume trade, and highest and lowest points on each day, all the way up till 2021. The datasets exist individually but don't have a combined version for the latest year, so I merged them and have added them here.

    There are no null values or empty columns, and all the data added is correct till date. The huge amount of tokens can seem overwhelming at first, but you can easily slice them up into subsequent classes according to the token, with a few lines of Pandas codes.

    The dataset is used and merged from https://coinmarketcap.com/

  4. Bitcoin Historical Data

    • kaggle.com
    zip
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zielak (2025). Bitcoin Historical Data [Dataset]. https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data/discussion
    Explore at:
    zip(102636117 bytes)Available download formats
    Dataset updated
    Nov 12, 2025
    Authors
    Zielak
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    Bitcoin is the longest running and most well known cryptocurrency, first released as open source in 2009 by the anonymous Satoshi Nakamoto. Bitcoin serves as a decentralized medium of digital exchange, with transactions verified and recorded in a public distributed ledger (the blockchain) without the need for a trusted record keeping authority or central intermediary. Transaction blocks contain a SHA-256 cryptographic hash of previous transaction blocks, and are thus "chained" together, serving as an immutable record of all transactions that have ever occurred. As with any currency/commodity on the market, bitcoin trading and financial instruments soon followed public adoption of bitcoin and continue to grow. Included here is historical bitcoin market data at 1-min intervals for select bitcoin exchanges where trading takes place. Happy (data) mining!

    Content

    (See https://github.com/mczielinski/kaggle-bitcoin/ for automation/scraping script)

    btcusd_1-min_data.csv
    

    CSV files for select bitcoin exchanges for the time period of Jan 2012 to Present (Measured by UTC day), with minute to minute updates of OHLC (Open, High, Low, Close) and Volume in BTC.

    If a timestamp is missing, or if there are jumps, this may be because the exchange (or its API) was down, the exchange (or its API) did not exist, or some other unforeseen technical error in data reporting or gathering. I'm not perfect, and I'm also busy! All effort has been made to deduplicate entries and verify the contents are correct and complete to the best of my ability, but obviously trust at your own risk.

    Acknowledgements and Inspiration

    Bitcoin charts for the data, originally. Now thank you to the Bitstamp API directly. The various exchange APIs, for making it difficult or unintuitive enough to get OHLC and volume data at 1-min intervals that I set out on this data scraping project. Satoshi Nakamoto and the novel core concept of the blockchain, as well as its first execution via the bitcoin protocol. I'd also like to thank viewers like you! Can't wait to see what code or insights you all have to share.

  5. TOP 10 crypto-currency from 2011-2023

    • kaggle.com
    zip
    Updated Mar 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dhieb Tarak (2023). TOP 10 crypto-currency from 2011-2023 [Dataset]. https://www.kaggle.com/datasets/dhiebtarak/top-10-crypto-currency-from-2011-2023
    Explore at:
    zip(1144542 bytes)Available download formats
    Dataset updated
    Mar 25, 2023
    Authors
    Dhieb Tarak
    Description

    This dataset provides a detailed look at the top 10 cryptocurrencies from 2011 to 2023. While not all of the included cryptocurrencies were in existence in 2011, the data begins at this point to provide a comprehensive historical view of the cryptocurrency market. The dataset includes daily market capitalization, trading volume, price, and other key metrics for each cryptocurrency. The top 10 cryptocurrencies in this dataset include Bitcoin, Ethereum, Binance Coin, Cardano, Dogecoin, XRP, Solana, Polkadot, USD Coin, and Terra. It is important to note that this dataset is not empty and provides meaningful information, even for the earlier years when not all of the included cryptocurrencies were yet in existence. This dataset is useful for anyone interested in analyzing trends in the cryptocurrency market over time or investigating the performance of individual cryptocurrencies. The data was collected from a variety of sources and is updated regularly to ensure accuracy and completeness.

  6. Iranian Toman & USDT & CRYPTOS 💲 🇮🇷

    • kaggle.com
    zip
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Jalaali (2025). Iranian Toman & USDT & CRYPTOS 💲 🇮🇷 [Dataset]. https://www.kaggle.com/datasets/alijalali4ai/iranian-toman-and-usdt-and-cryptos
    Explore at:
    zip(49522813 bytes)Available download formats
    Dataset updated
    Oct 20, 2025
    Authors
    Ali Jalaali
    Area covered
    Iran
    Description

    Data from NOBITEX (One of the major Iranian cryptocurrency exchange platforms) including: - Historical exchange rate of USD Tether to Iranian Toman - Historical exchange rate of several major cryptocurrencies to both Iranian Toman and USD Tether.

    Please be aware that a significant data gap exists in this dataset for all cryptocurrencies from June 18, 2025, to July 1, 2025.

    Wikipedia:

    On June 18, 2025, it was reported that a group called Gonjeshke Darande (also called "Predatory Sparrow") stole $90 million in digital assets from the Iranian Nobitex cryptocurrency exchange. Gonjeshke Darande, which may have links to Israel, appears to have been motivated by Israeli missile attacks on Iran several days prior.

    This cyberattack was a direct component of the broader military conflict between Israel and Iran. The security breach and subsequent operational outage at Nobitex, which is a central source for this dataset, prevented the collection of reliable exchange rate data throughout the duration of the 12-day war. Data collection resumed normally after the conflict subsided and the exchange stabilized around July 1st.

    Cryptos include: - Bitcoin (BTC) - Ethereum (ETH) - Binance coin (BNB) - Solana (SOL) - Ripple (XRP) - Toncoin (TON) - Dogecoin (DOGE) - Cardano (ADA) - Shiba Inu (SHIB) - Polkadot (DOT) - Chainlink (LINK) - Bitcoin Cash (BCH) - Uniswap (UNI) - Litecoin (LTC) - Ethereum Classic (ETC) - Stellar (XLM) - Lido DAO (LDO) - Notcoin (NOT)

    Resolutions or Time Frames: Hourly

  7. Cryptocurrency extra data - Bitcoin

    • kaggle.com
    zip
    Updated Dec 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2021). Cryptocurrency extra data - Bitcoin [Dataset]. http://doi.org/10.34740/kaggle/dsv/2957358
    Explore at:
    zip(1293027802 bytes)Available download formats
    Dataset updated
    Dec 22, 2021
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  8. Cryptocurrency extra data - Cardano

    • kaggle.com
    zip
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Cardano [Dataset]. https://www.kaggle.com/datasets/yamqwe/cryptocurrency-extra-data-cardano/code
    Explore at:
    zip(1254179058 bytes)Available download formats
    Dataset updated
    Jan 20, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  9. Cryptocurrency extra data - Bitcoin Cash

    • kaggle.com
    zip
    Updated Jan 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Bitcoin Cash [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-bitcoin-cash
    Explore at:
    zip(1253909016 bytes)Available download formats
    Dataset updated
    Jan 19, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  10. All price history for BTC

    • kaggle.com
    zip
    Updated Jan 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    oleksii_valitov (2024). All price history for BTC [Dataset]. https://www.kaggle.com/datasets/oleksiivalitov/all-price-history-for-btc
    Explore at:
    zip(94530 bytes)Available download formats
    Dataset updated
    Jan 2, 2024
    Authors
    oleksii_valitov
    Description

    This dataset contains information on Bitcoin prices throughout its entire existence, providing daily values for the following features:

    Date: The date in the year-month-day format, representing each day since the inception of Bitcoin.

    Price: The Bitcoin price value in US dollars on a specific date.

    Open: The opening price of Bitcoin on that day.

    High: The highest achieved price of Bitcoin during the day.

    Low: The lowest achieved price of Bitcoin during the day.

    Vol.: The trading volume of Bitcoin for the respective day.

    Change %: The percentage change in Bitcoin price from the previous day.

    This dataset offers a comprehensive history of Bitcoin prices, supplying essential parameters for analyzing daily fluctuations in its value.

  11. Cryptocurrency extra data - IOTA

    • kaggle.com
    zip
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - IOTA [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-iota
    Explore at:
    zip(1196411839 bytes)Available download formats
    Dataset updated
    Jan 20, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  12. Cryptocurrency extra data - Monero

    • kaggle.com
    zip
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Monero [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-monero
    Explore at:
    zip(1204684577 bytes)Available download formats
    Dataset updated
    Jan 20, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  13. Cryptocurrency extra data - TRON

    • kaggle.com
    zip
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - TRON [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-tron
    Explore at:
    zip(1253566627 bytes)Available download formats
    Dataset updated
    Jan 20, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  14. Cryptocurrency extra data - Binance Coin

    • kaggle.com
    zip
    Updated Jan 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Binance Coin [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-binance-coin
    Explore at:
    zip(1246039618 bytes)Available download formats
    Dataset updated
    Jan 19, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  15. Cryptocurrency extra data - Ethereum Classic

    • kaggle.com
    zip
    Updated Jan 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2022). Cryptocurrency extra data - Ethereum Classic [Dataset]. https://www.kaggle.com/yamqwe/cryptocurrency-extra-data-ethereum-classic
    Explore at:
    zip(1259913408 bytes)Available download formats
    Dataset updated
    Jan 19, 2022
    Authors
    Yam Peleg
    Description

    Context:

    This dataset is an extra updating dataset for the G-Research Crypto Forecasting competition.

    Introduction

    This is a daily updated dataset, automaticlly collecting market data for G-Research crypto forecasting competition. The data is of the 1-minute resolution, collected for all competition assets and both retrieval and uploading are fully automated. see discussion topic.

    The Data

    For every asset in the competition, the following fields from Binance's official API endpoint for historical candlestick data are collected, saved, and processed.

    
    1. **timestamp** - A timestamp for the minute covered by the row.
    2. **Asset_ID** - An ID code for the cryptoasset.
    3. **Count** - The number of trades that took place this minute.
    4. **Open** - The USD price at the beginning of the minute.
    5. **High** - The highest USD price during the minute.
    6. **Low** - The lowest USD price during the minute.
    7. **Close** - The USD price at the end of the minute.
    8. **Volume** - The number of cryptoasset u units traded during the minute.
    9. **VWAP** - The volume-weighted average price for the minute.
    10. **Target** - 15 minute residualized returns. See the 'Prediction and Evaluation section of this notebook for details of how the target is calculated.
    11. **Weight** - Weight, defined by the competition hosts [here](https://www.kaggle.com/cstein06/tutorial-to-the-g-research-crypto-competition)
    12. **Asset_Name** - Human readable Asset name.
    

    Indexing

    The dataframe is indexed by timestamp and sorted from oldest to newest. The first row starts at the first timestamp available on the exchange, which is July 2017 for the longest-running pairs.

    Usage Example

    The following is a collection of simple starter notebooks for Kaggle's Crypto Comp showing PurgedTimeSeries in use with the collected dataset. Purged TimesSeries is explained here. There are many configuration variables below to allow you to experiment. Use either GPU or TPU. You can control which years are loaded, which neural networks are used, and whether to use feature engineering. You can experiment with different data preprocessing, model architecture, loss, optimizers, and learning rate schedules. The extra datasets contain the full history of the assets in the same format as the competition, so you can input that into your model too.

    Baseline Example Notebooks:

    These notebooks follow the ideas presented in my "Initial Thoughts" here. Some code sections have been reused from Chris' great (great) notebook series on SIIM ISIC melanoma detection competition here

    Loose-ends:

    This is a work in progress and will be updated constantly throughout the competition. At the moment, there are some known issues that still needed to be addressed:

    • VWAP: - At the moment VWAP calculation formula is still unclear. Currently the dataset uses an approximation calculated from the Open, High, Low, Close, Volume candlesticks. [Waiting for competition hosts input]
    • Target Labeling: There exist some mismatches to the original target provided by the hosts at some time intervals. On all the others - it is the same. The labeling code can be seen here. [Waiting for competition hosts] input]
    • Filtering: No filtration of 0 volume data is taken place.

    Example Visualisations

    Opening price with an added indicator (MA50): https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fb8664e6f26dc84e9a40d5a3d915c9640%2Fdownload.png?generation=1582053879538546&alt=media" alt="">

    Volume and number of trades: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2234678%2Fcd04ed586b08c1576a7b67d163ad9889%2Fdownload-1.png?generation=1582053899082078&alt=media" alt="">

    License

    This data is being collected automatically from the crypto exchange Binance.

  16. Bitcoin Historical Price

    • kaggle.com
    zip
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shree (2018). Bitcoin Historical Price [Dataset]. https://www.kaggle.com/shree1992/bitcoin-historical-price
    Explore at:
    zip(33770 bytes)Available download formats
    Dataset updated
    Jun 8, 2018
    Authors
    Shree
    Description

    Any form of currency that only exists digitally relying on cryptography to prevent counterfeiting and fraudulent transactions is defined as cryptocurrency. Bitcoin was the very first Cryptocurrency. It was invented in 2009 by an anonymous person, or group of people, who referred to themselves as Satoshi Nakamoto. When someone sends a bitcoin (or a fraction of a bitcoin) to someone else, “miners” record that transaction in a block and add the transaction to a digital ledger. These blocks are collectively known as the blockchain – an openly accessible ledger of every transaction ever made in bitcoin. Blockchains are distributed across many computers so that the record of transactions cannot be altered. Only 21 million bitcoins can ever be mined and about 17 million have been mined so far. Bitcoin is mined, or created, by people (miners) getting their computers to solve mathematical problems, in order to update and verify the ledger.

    The value of bitcoin is determined by what people are willing to pay for it, and is very volatile, fluctuating wildly from day to day. In April 2013, the value of 1 bitcoin (BTC) was around $100 USD. At the beginning of 2017 its value was $1,022 USD and by the 15th of December it was worth $19,497. As of the 3rd of March 2018, 1 BTC sells for $11,513 USD. So, the time series analysis of bitcoin series is very challenging.

    The following dataset is the daily closing price of bitcoin from the 27th of April 2013 to the 3rd of March 2018. Source: coinmarketcap.com

    The dataset is focused on has gathered from coinmarketcap.com (https://coinmarketcap.com/). includes he daily closing price of bitcoin from the 27th of April 2013 to the 3rd of March 2018 and is available in the csv file Bitcoin_Historical_Price.csv

    This Model includes a mean absolute scaled error (MASE), for each of model fits and forecasts. Using the real values of daily bitcoin for 10 days of forecast period (4th - 13th of March 2018).

    This model is used to analyze the data, accurately predict the value of bitcoin for the next 10 days. The model includes descriptive analysis, proper visualization, model specification, model fitting and selection, and diagnostic checking.

  17. Top 5,000 crypto coins

    • kaggle.com
    zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sohaib Haroon (2025). Top 5,000 crypto coins [Dataset]. https://www.kaggle.com/datasets/sohaibharooon/top-5000-crypto-coins
    Explore at:
    zip(529645 bytes)Available download formats
    Dataset updated
    Nov 7, 2025
    Authors
    Sohaib Haroon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset is extracted form CoinGecko using Api, contain top 5,000 coin ranked by dominace in global crypto marked

    Eracted time 6-7 November 2025

    Columns

    Column NameExplanation
    extracted_timeThe exact UTC timestamp when the data was extracted from the API.
    idThe unique CoinGecko identifier for the cryptocurrency.
    rankThe current market capitalization rank among all cryptocurrencies.
    nameThe full name of the cryptocurrency project.
    symbol"The unique ticker symbol of the cryptocurrency (e.g., HEART, TLM)."
    current_priceThe current price of the cryptocurrency in USD.
    marketcap"The total market value, calculated as current_price multiplied by circulating_supply."
    dominance_%The cryptocurrency's market capitalization as a percentage of the total crypto market capitalization.
    circulating_supplyThe number of tokens currently available and publicly circulating in the market.
    total_supply"The total amount of tokens in existence, including those locked or reserved."
    max_supplyThe maximum number of tokens that will ever be created for this cryptocurrency.
    athThe All-Time High price in USD reached by the asset.
    ath_dateThe date (UTC timestamp) on which the All-Time High price was recorded.
    atlThe All-Time Low price in USD reached by the asset.
    atl_dateThe date (UTC timestamp) on which the All-Time Low price was recorded.
    ath_change_percentThe percentage difference between the current price and the All-Time High price.
    chang_1h_percentThe percentage change in price over the last 1 hour.
    chang_24h_percentThe percentage change in price over the last 24 hours.
    chang_7d_percentThe percentage change in price over the last 7 days.
  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sourav Banerjee (2023). Top 3000+ Cryptocurrency Dataset [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cryptocurrency-dataset-2021-395-types-of-crypto
Organization logo

Top 3000+ Cryptocurrency Dataset

Cryptocurrency Cosmos: A Comprehensive Dataset of 3000+ Digital Currencies

Explore at:
zip(115000 bytes)Available download formats
Dataset updated
Apr 9, 2023
Authors
Sourav Banerjee
Description

Context

A cryptocurrency, crypto-currency, or crypto is a collection of binary data which is designed to work as a medium of exchange. Individual coin ownership records are stored in a ledger, which is a computerized database using strong cryptography to secure transaction records, to control the creation of additional coins, and to verify the transfer of coin ownership. Cryptocurrencies are generally fiat currencies, as they are not backed by or convertible into a commodity. Some crypto schemes use validators to maintain the cryptocurrency. In a proof-of-stake model, owners put up their tokens as collateral. In return, they get authority over the token in proportion to the amount they stake. Generally, these token stakes get additional ownership in the token overtime via network fees, newly minted tokens, or other such reward mechanisms.

Cryptocurrency does not exist in physical form (like paper money) and is typically not issued by a central authority. Cryptocurrencies typically use decentralized control as opposed to a central bank digital currency (CBDC). When a cryptocurrency is minted or created prior to issuance or issued by a single issuer, it is generally considered centralized. When implemented with decentralized control, each cryptocurrency works through distributed ledger technology, typically a blockchain, that serves as a public financial transaction database

A cryptocurrency is a tradable digital asset or digital form of money, built on blockchain technology that only exists online. Cryptocurrencies use encryption to authenticate and protect transactions, hence their name. There are currently over a thousand different cryptocurrencies in the world, and many see them as the key to a fairer future economy.

Bitcoin, first released as open-source software in 2009, is the first decentralized cryptocurrency. Since the release of bitcoin, many other cryptocurrencies have been created.

Content

This Dataset is a collection of records of 3000+ Different Cryptocurrencies. * Top 395+ from 2021 * Top 3000+ from 2023

Structure of the Dataset

https://i.imgur.com/qGVJaHl.png" alt="">

Acknowledgements

This Data is collected from: https://finance.yahoo.com/. If you want to learn more, you can visit the Website.

Cover Photo by Worldspectrum: https://www.pexels.com/photo/ripple-etehereum-and-bitcoin-and-micro-sdhc-card-844124/

Search
Clear search
Close search
Google apps
Main menu