53 datasets found
  1. Amazon Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Amazon Dataset [Dataset]. https://brightdata.com/products/datasets/amazon
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more

  2. h

    amazon_us_reviews

    • huggingface.co
    • tensorflow.org
    Updated Jun 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polina Kazakova (2023). amazon_us_reviews [Dataset]. https://huggingface.co/datasets/polinaeterna/amazon_us_reviews
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Polina Kazakova
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.

    Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).

    Each Dataset contains the following columns:

    • marketplace: 2 letter country code of the marketplace where the review was written.
    • customer_id: Random identifier that can be used to aggregate reviews written by a single author.
    • review_id: The unique ID of the review.
    • product_id: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.
    • product_parent: Random identifier that can be used to aggregate reviews for the same product.
    • product_title: Title of the product.
    • product_category: Broad product category that can be used to group reviews (also used to group the dataset into coherent parts).
    • star_rating: The 1-5 star rating of the review.
    • helpful_votes: Number of helpful votes.
    • total_votes: Number of total votes the review received.
    • vine: Review was written as part of the Vine program.
    • verified_purchase: The review is on a verified purchase.
    • review_headline: The title of the review.
    • review_body: The review text.
    • review_date: The date the review was written.
  3. u

    Amazon review data 2018

    • cseweb.ucsd.edu
    • nijianmo.github.io
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
    Explore at:
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  4. Amazon Product Reviews Dataset

    • kaggle.com
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gözde Kızılkaya Atik (2025). Amazon Product Reviews Dataset [Dataset]. https://www.kaggle.com/datasets/gzdekzlkaya/amazon-product-reviews-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 16, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gözde Kızılkaya Atik
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    🛍️ Dataset Overview

    This dataset contains over 4,900 customer reviews from Amazon, including text-based feedback, star ratings, and helpfulness votes.

    It can be used for:

    • 📊 Sentiment Analysis
    • 🧠 Text Classification (Positive/Negative)
    • 🔍 Review Score Prediction (based on reviewText)
    • 🤖 Building Recommendation Systems
    • 🧮 Helpfulness Scoring Models

    📌 Key Columns

    • reviewText: Full written review
    • overall: Star rating (1 to 5)
    • summary: Short summary of the review
    • helpful_yes: Number of users who found the review helpful
    • total_vote: Total votes on helpfulness
    • day_diff: Days since the review was written

    This dataset is suitable for natural language processing (NLP) and supervised learning tasks.

    📎 Note

    This is a publicly available dataset for educational and research use.

  5. b

    Amazon reviews Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Amazon reviews Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/reviews
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.

  6. Amazon Products Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Products Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/product
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Buy Amazon datasets and get access to over 300 million records from any Amazon domain. Get insights on Amazon products, sellers, and reviews.

  7. Amazon Prime Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Prime Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/prime
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock powerful insights with the Amazon Prime dataset, offering access to millions of records from any Amazon domain. This dataset provides comprehensive data points such as product titles, descriptions, exclusive Prime discounts, brand details, pricing (initial and discounted), availability, customer ratings, reviews, and product categories. Additionally, it includes unique identifiers like ASINs, images, and seller information, allowing you to analyze Prime offerings, trends, and customer preferences with precision. Use this dataset to optimize your eCommerce strategies by analyzing Prime-exclusive pricing strategies, identifying top-performing brands and products, and tracking customer sentiment through reviews and ratings. Gain valuable insights into consumer demand, seasonal trends, and the impact of Prime discounts to make data-driven decisions that enhance your inventory management, marketing campaigns, and pricing strategies. Whether you’re a retailer, marketer, data analyst, or researcher, the Amazon Prime dataset empowers you with the data needed to stay competitive in the dynamic eCommerce landscape. Available in various formats such as JSON, CSV, and Parquet, and delivered via flexible options like API, S3, or email, this dataset ensures seamless integration into your workflows.

  8. u

    Amazon Question and Answer Data

    • cseweb.ucsd.edu
    json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon Question and Answer Data [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    These datasets contain 1.48 million question and answer pairs about products from Amazon.

    Metadata includes

    • question and answer text

    • is the question binary (yes/no), and if so does it have a yes/no answer?

    • timestamps

    • product ID (to reference the review dataset)

    Basic Statistics:

    • Questions: 1.48 million

    • Answers: 4,019,744

    • Labeled yes/no questions: 309,419

    • Number of unique products with questions: 191,185

  9. w

    Amazon Web Services - Public Data Sets

    • data.wu.ac.at
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global (2013). Amazon Web Services - Public Data Sets [Dataset]. https://data.wu.ac.at/schema/datahub_io/NTYxNjkxNmYtNmZlNS00N2EwLWJkYTktZjFjZWJkNTM2MTNm
    Explore at:
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Global
    Description

    About

    From website:

    Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.

    Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.

  10. Amazon Electronics Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Electronics Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/electronics
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Unlock powerful insights with the Amazon Electronics dataset, offering access to millions of records from any Amazon domain. This dataset provides comprehensive data points such as product titles, descriptions, brand details, pricing (initial and discounted), availability, customer ratings, reviews, and product categories. Additionally, it includes unique identifiers like ASINs, images, and seller information, allowing you to analyze product listings, trends, and customer preferences with precision. Use this dataset to optimize your eCommerce strategies by benchmarking competitor pricing, identifying top-performing brands, and tracking customer sentiment through reviews and ratings. Gain valuable insights into consumer demand, seasonal trends, and market gaps to make data-driven decisions that enhance your inventory management, marketing campaigns, and pricing strategies. Whether you’re a retailer, marketer, data analyst, or researcher, the Amazon Electronics dataset empowers you with the data needed to stay competitive in the dynamic eCommerce landscape. Available in various formats such as JSON, CSV, and Parquet, and delivered via flexible options like API, S3, or email, this dataset ensures seamless integration into your workflows.

  11. d

    Open e-commerce 1.0: Five years of crowdsourced U.S. Amazon purchase...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Berke; Dan Calacci; Robert Mahari; Takahiro Yabe; Kent Larson; Sandy Pentland (2023). Open e-commerce 1.0: Five years of crowdsourced U.S. Amazon purchase histories with user demographics [Dataset]. http://doi.org/10.7910/DVN/YGLYDY
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Alex Berke; Dan Calacci; Robert Mahari; Takahiro Yabe; Kent Larson; Sandy Pentland
    Description

    This dataset contains longitudinal purchases data from 5027 Amazon.com users in the US, spanning 2018 through 2022: amazon-purchases.csv It also includes demographic data and other consumer level variables for each user with data in the dataset. These consumer level variables were collected through an online survey and are included in survey.csv fields.csv describes the columns in the survey.csv file, where fields/survey columns correspond to survey questions. The dataset also contains the survey instrument used to collect the data. More details about the survey questions and possible responses, and the format in which they were presented can be found by viewing the survey instrument. A 'Survey ResponseID' column is present in both the amazon-purchases.csv and survey.csv files. It links a user's survey responses to their Amazon.com purchases. The 'Survey ResponseID' was randomly generated at the time of data collection. amazon-purchases.csv Each row in this file corresponds to an Amazon order. Each such row has the following columns: Survey ResponseID Order date Shipping address state Purchase price per unit Quantity ASIN/ISBN (Product Code) Title Category The data were exported by the Amazon users from Amazon.com and shared by users with their informed consent. PII and other information not listed above were stripped from the data. This processing occurred on users' machines before sharing with researchers.

  12. Amazon Reviews Dataset

    • kaggle.com
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongre Laxman (2024). Amazon Reviews Dataset [Dataset]. https://www.kaggle.com/datasets/dongrelaxman/amazon-reviews-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dongre Laxman
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset comprises customer reviews for Amazon, an online retail giant, featuring insights into customer experiences, including ratings, review titles, texts, and metadata. It is valuable for analyzing customer satisfaction, sentiment, and trends.

    Column Descriptions:

    Reviewer Name: Identifies the reviewer. Profile Link: Links to the reviewer's profile for additional insights. Country: Indicates the reviewer's location. Review Count: Number of reviews by the same user, showing engagement level. Review Date: When the review was posted, useful for time analysis. Rating: Numerical satisfaction measure. Review Title: Summarizes the review sentiment. Review Text: Detailed customer feedback. Date of Experience: When the service/product was experienced.

    Prospective applications:

    Sentiment Analysis: Analyze review texts and titles to assess overall customer sentiment toward products, enabling the identification of strengths and weaknesses. Customer Satisfaction Tracking: Track and visualize rating trends over time to understand fluctuations in customer satisfaction. Product Improvement: Identify common themes in reviews to highlight areas for product enhancement or development. Market Segmentation: Use country and demographic information to customize marketing strategies and gain insights into regional preferences. Competitor Analysis: Evaluate customer feedback on Amazon products in comparison to competitors to determine market positioning. Recommendation Systems: Leverage review data to enhance recommendation algorithms, improving personalized shopping experiences. Trend Analysis: Investigate temporal patterns in reviews to link sentiment changes with marketing efforts or product launches.

    This extensive dataset serves as a valuable asset for various analyses focused on enhancing customer engagement and refining business strategies.

  13. Amazon Beauty Products Dataset with Ingredients (47K Records)

    • crawlfeeds.com
    csv, zip
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Amazon Beauty Products Dataset with Ingredients (47K Records) [Dataset]. https://crawlfeeds.com/datasets/amazon-beauty-products-dataset-with-ingredients-47k-records
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Gain insights into Amazon’s beauty and personal care market with this comprehensive Amazon Beauty Products Dataset. Covering 47,000 records across skincare, haircare, and makeup, this dataset provides full ingredient lists, product descriptions, pricing, and availability. Ideal for researchers and businesses focused on ingredient transparency, beauty trend analysis, and competitive market insights. Perfect for applications in ingredient research, product development, and e-commerce analysis.

    Access a rich Amazon Beauty & Cosmetics dataset with over 200,000+ product records, including detailed ingredients.
    Explore more on our Beauty & Cosmetics Data page or view the full Amazon Beauty Dataset

    Walmart product dataset featuring detailed ingredient information across categories like beauty, food, personal care, and more.
    View Dataset →

    The dataset includes the following fields:

    • ASIN: Unique Amazon product identifier.
    • Product Name and Description: Full titles and descriptions of each product.
    • Price and Availability: Current pricing and stock status.
    • Categories: Product type classification (e.g., skincare, haircare, makeup).
    • Ingredients: Complete ingredient lists, ensuring transparency about product composition.
    • Images: High-quality product images.
    • Brand and Manufacturer Information: Details of the brand and manufacturer.
    • Customer Ratings and Reviews: User-generated content for understanding product popularity and performance.

    This dataset is invaluable for:

    • Ingredient Analysis: Understanding popular ingredients in beauty products.
    • Market Research: Analyzing trends in beauty products, such as ingredient types and product categories.
    • Competitive Analysis: Assessing product offerings by brand, price, and ingredients.

    Whether you’re focused on skincare, haircare, makeup, or other beauty categories, this dataset provides in-depth information for deep analysis. For any custom requirements or additional data needs, please feel free to reach out.

  14. d

    More than 1,070,574 Verified Contacts of companies that use Amazon AWS

    • datarade.ai
    Updated Aug 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataCaptive (2021). More than 1,070,574 Verified Contacts of companies that use Amazon AWS [Dataset]. https://datarade.ai/data-providers/datacaptive/data-products/more-than-1-070-574-verified-contacts-of-companies-that-use-a-datacaptive
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Aug 20, 2021
    Dataset authored and provided by
    DataCaptive
    Area covered
    Niger, Virgin Islands (British), Tunisia, British Indian Ocean Territory, Rwanda, Kyrgyzstan, Saint Helena, Iceland, Tonga, Singapore
    Description

    Amazon AWS - Cloud Platforms & Services

    Companies using Amazon AWS

    We have data on 1,070,574 companies that use Amazon AWS. The companies using Amazon AWS are most often found in United States and in the Computer Software industry. Amazon AWS is most often used by companies with 10-50 employees and 1M-10M dollars in revenue. Our data for Amazon AWS usage goes back as far as 2 years and 1 months.

    What is Amazon AWS?

    Amazon Web Services (AWS) is a collection of remote computing services, also called web services that make up a cloud computing platform offered by Amazon.com.

    Top Industries that use Amazon AWS

    Looking at Amazon AWS customers by industry, we find that Computer Software (6%) is the largest segment.

    Distribution of companies using Amazon AWS by Industry

     Computer software - 67, 537 companies  Hospitals & Healthcare - 54, 293 companies  Retail - 39, 543 companies  Information Technology and Services - 35, 382 companies  Real Estate - 31, 676 companies  Restaurants - 30, 302 companies  Construction - 29, 207 companies  Automotive - 28, 469 companies  Financial Services - 23, 680 companies  Education Management - 21, 548 companies

    Top Countries that use Amazon AWS

    49% of Amazon AWS customers are in United States and 7% are in United Kingdom.

    Distribution of companies using Amazon AWS by country

     United Sates – 616 2275 companies  United Kingdom – 68 219 companies  Australia – 44 601 companies  Canada – 42 770 companies  Germany – 31 541 companies  India – 30 949 companies  Netherlands – 19 543 companies  Brazil – 17 165 companies  Italy – 14 876 companies  Spain – 14 675 companies

    Contact Information of Fields Include:-

    • Company Name • Business contact number • Title
    • Name • Email Address • Country, State, City, Zip Code • Phone, Mobile and Fax • Website • Industry • SIC & NAICS Code • Employees Size
    • Revenue Size
    • And more…

    Why Buy AWS Users List from DataCaptive?

    • More than 1,070,574 companies
    • Responsive database • Customizable as per your requirements • Email and Tele-verified list • Team of 100+ market researchers • Authentic data sources

    What’s in for you?

    Over choosing us, here are a few advantages we authenticate-

    • Locate, target, and prospect leads from 170+ countries • Design and execute ABM and multi-channel campaigns • Seamless and smooth pre-and post-sale customer service • Connect with old leads and build a fruitful customer relationship • Analyze the market for product development and sales campaigns • Boost sales and ROI with increased customer acquisition and retention

    Our security compliance

    We use of globally recognized data laws like –

    GDPR, CCPA, ACMA, EDPS, CAN-SPAM and ANTI CAN-SPAM to ensure the privacy and security of our database. We engage certified auditors to validate our security and privacy by providing us with certificates to represent our security compliance.

    Our USPs- what makes us your ideal choice?

    At DataCaptive™, we strive consistently to improve our services and cater to the needs of businesses around the world while keeping up with industry trends.

    • Elaborate data mining from credible sources • 7-tier verification, including manual quality check • Strict adherence to global and local data policies • Guaranteed 95% accuracy or cash-back • Free sample database available on request

    Guaranteed benefits of our Amazon AWS users email database!

    85% email deliverability and 95% accuracy on other data fields

    We understand the importance of data accuracy and employ every avenue to keep our database fresh and updated. We execute a multi-step QC process backed by our Patented AI and Machine learning tools to prevent anomalies in consistency and data precision. This cycle repeats every 45 days. Although maintaining 100% accuracy is quite impractical, since data such as email, physical addresses, and phone numbers are subjected to change, we guarantee 85% email deliverability and 95% accuracy on other data points.

    100% replacement in case of hard bounces

    Every data point is meticulously verified and then re-verified to ensure you get the best. Data Accuracy is paramount in successfully penetrating a new market or working within a familiar one. We are committed to precision. However, in an unlikely event where hard bounces or inaccuracies exceed the guaranteed percentage, we offer replacement with immediate effect. If need be, we even offer credits and/or refunds for inaccurate contacts.

    Other promised benefits

    • Contacts are for the perpetual usage • The database comprises consent-based opt-in contacts only • The list is free of duplicate contacts and generic emails • Round-the-clock customer service assistance • 360-degree database solutions

  15. m

    Amazon.com Inc - Operating-Expenses

    • macro-rankings.com
    csv, excel
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Amazon.com Inc - Operating-Expenses [Dataset]. https://www.macro-rankings.com/markets/stocks/amzn-nasdaq/income-statement/operating-expenses
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Operating-Expenses Time Series for Amazon.com Inc. Amazon.com, Inc. engages in the retail sale of consumer products, advertising, and subscriptions service through online and physical stores in North America and internationally. The company operates through three segments: North America, International, and Amazon Web Services (AWS). It also manufactures and sells electronic devices, including Kindle, fire tablets, fire TVs, echo, ring, blink, and eero; and develops and produces media content. In addition, the company offers programs that enable sellers to sell their products in its stores; and programs that allow authors, independent publishers, musicians, filmmakers, Twitch streamers, skill and app developers, and others to publish and sell content. Further, it provides compute, storage, database, analytics, machine learning, and other services, as well as advertising services through programs, such as sponsored ads, display, and video advertising. Additionally, the company offers Amazon Prime, a membership program. The company's products offered through its stores include merchandise and content purchased for resale and products offered by third-party sellers. It serves consumers, sellers, developers, enterprises, content creators, advertisers, and employees. Amazon.com, Inc. was incorporated in 1994 and is headquartered in Seattle, Washington.

  16. Amazon revenue 2004-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon revenue 2004-2024 [Dataset]. https://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, Worldwide
    Description

    From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.

  17. Amazon Food Review Dataset

    • kaggle.com
    Updated Mar 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satya (2023). Amazon Food Review Dataset [Dataset]. https://www.kaggle.com/datasets/satyabrat35/amazon-food-review-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Satya
    Description

    This dataset consists of reviews of fine foods from amazon. The data span a period of more than 10 years, including all ~500,000 reviews up to October 2012. Reviews include product and user information, ratings, and a plaintext review. Number of reviews -> 568,454 Number of users -> 256,059 Number of products -> 74,258

    Citation - J. McAuley and J. Leskovec. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews WWW, 2013.

  18. Amazon Fashion Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Fashion Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/fashion
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Buy Amazon Fashion datasets and get access to millions of records from any Amazon domain. Gain insights on fashion products, sellers, and customer reviews.

  19. m

    Amazon.com Inc - Depreciation-and-Amortization-Expense

    • macro-rankings.com
    csv, excel
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Amazon.com Inc - Depreciation-and-Amortization-Expense [Dataset]. https://www.macro-rankings.com/markets/stocks/amzn-nasdaq/income-statement/depreciation-and-amortization-expense
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Depreciation-and-Amortization-Expense Time Series for Amazon.com Inc. Amazon.com, Inc. engages in the retail sale of consumer products, advertising, and subscriptions service through online and physical stores in North America and internationally. The company operates through three segments: North America, International, and Amazon Web Services (AWS). It also manufactures and sells electronic devices, including Kindle, fire tablets, fire TVs, echo, ring, blink, and eero; and develops and produces media content. In addition, the company offers programs that enable sellers to sell their products in its stores; and programs that allow authors, independent publishers, musicians, filmmakers, Twitch streamers, skill and app developers, and others to publish and sell content. Further, it provides compute, storage, database, analytics, machine learning, and other services, as well as advertising services through programs, such as sponsored ads, display, and video advertising. Additionally, the company offers Amazon Prime, a membership program. The company's products offered through its stores include merchandise and content purchased for resale and products offered by third-party sellers. It serves consumers, sellers, developers, enterprises, content creators, advertisers, and employees. Amazon.com, Inc. was incorporated in 1994 and is headquartered in Seattle, Washington.

  20. Amazon Brands and Exclusives

    • kaggle.com
    Updated Nov 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Amazon Brands and Exclusives [Dataset]. https://www.kaggle.com/datasets/thedevastator/amazon-s-dominance-in-e-commerce-why-you-should
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon Brands and Exclusives

    Dataset from "Amazon Puts Its Own 'Brands' First Above Better-Rated Products"

    About this dataset

    This dataset contains information on the quality and sales of products on Amazon, as well as on the percentage of time that Amazon's own products are featured in the Buy Box. It also includes data on the top searches and generic searches on Amazon, as well as on the percentage of panelists who ranked each trait as very important or somewhat important when choosing a product on Amazon

    Research Ideas

    • Determine which features are most important to customers when they are shopping on Amazon.
    • Understand how Amazon's own products compare to other products in terms of quality and sales.
    • Study how Amazon's marketing and ranking algorithms work, in order to optimize product listings on the site

    Acknowledgements

    Acknowledgements The datasets used in this article were provided by The Markup

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: combined_queries_with_source.csv | Column name | Description | |:----------------|:-----------------------------------------| | search_term | The search term used on Amazon. (String) | | source | The source of the search term. (String) |

    File: quality_and_sales_comparisons.csv | Column name | Description | |:-------------------------------------|:----------------------------------------------------------------------------------------------| | search_term | The search term used on Amazon. (String) | | position_first_amazon | The position of the first Amazon product in the search results. (Integer) | | position_first_non_amazon | The position of the first non-Amazon product in the search results. (Integer) | | position_first_wholly_non_amazon | The position of the first wholly non-Amazon product in the search results. (Integer) | | amazon_stars | The average star rating for Amazon products in the search results. (Float) | | amazon_reviews | The average number of reviews for Amazon products in the search results. (Integer) | | non_amazon_stars | The average star rating for non-Amazon products in the search results. (Float) | | non_amazon_reviews | The average number of reviews for non-Amazon products in the search results. (Integer) | | wnon_amazon_stars | The average star rating for wholly non-Amazon products in the search results. (Float) | | wnon_amazon_reviews | The average number of reviews for wholly non-Amazon products in the search results. (Integer) |

    File: amazon_trademarked_brands.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Word Mark | The word mark of the product. (String) | | Goods and Services | The goods and services associated with the product. (String) | | Filing Date | The date on which the product was filed. (Date) |

    File: fig2-scatter.csv | Column name | Description | |:-------------------|:----------------------------------------------------------------------------------------------------| | **** | | | Category | The category of the product. (String) | | Perc Products | The percentage of products in the category that are sponsored. (Float) | | Perc #1 spot | The percentage of products in the category that are in the #1 spot in the search results. (Float) | | Perc first row | The percentage of products in the category that are in the first row of the search results. (Float) |

    File: fig3a-heatmap_amzn.csv | Column name | Description | |:-----...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2022). Amazon Dataset [Dataset]. https://brightdata.com/products/datasets/amazon
Organization logo

Amazon Dataset

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Mar 31, 2022
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more

Search
Clear search
Close search
Google apps
Main menu