https://brightdata.com/licensehttps://brightdata.com/license
Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.
Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).
Each Dataset contains the following columns:
This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper:
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains over 4,900 customer reviews from Amazon, including text-based feedback, star ratings, and helpfulness votes.
It can be used for:
reviewText
: Full written reviewoverall
: Star rating (1 to 5)summary
: Short summary of the reviewhelpful_yes
: Number of users who found the review helpfultotal_vote
: Total votes on helpfulnessday_diff
: Days since the review was writtenThis dataset is suitable for natural language processing (NLP) and supervised learning tasks.
This is a publicly available dataset for educational and research use.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.
https://brightdata.com/licensehttps://brightdata.com/license
Buy Amazon datasets and get access to over 300 million records from any Amazon domain. Get insights on Amazon products, sellers, and reviews.
https://brightdata.com/licensehttps://brightdata.com/license
Unlock powerful insights with the Amazon Prime dataset, offering access to millions of records from any Amazon domain. This dataset provides comprehensive data points such as product titles, descriptions, exclusive Prime discounts, brand details, pricing (initial and discounted), availability, customer ratings, reviews, and product categories. Additionally, it includes unique identifiers like ASINs, images, and seller information, allowing you to analyze Prime offerings, trends, and customer preferences with precision. Use this dataset to optimize your eCommerce strategies by analyzing Prime-exclusive pricing strategies, identifying top-performing brands and products, and tracking customer sentiment through reviews and ratings. Gain valuable insights into consumer demand, seasonal trends, and the impact of Prime discounts to make data-driven decisions that enhance your inventory management, marketing campaigns, and pricing strategies. Whether you’re a retailer, marketer, data analyst, or researcher, the Amazon Prime dataset empowers you with the data needed to stay competitive in the dynamic eCommerce landscape. Available in various formats such as JSON, CSV, and Parquet, and delivered via flexible options like API, S3, or email, this dataset ensures seamless integration into your workflows.
These datasets contain 1.48 million question and answer pairs about products from Amazon.
Metadata includes
question and answer text
is the question binary (yes/no), and if so does it have a yes/no answer?
timestamps
product ID (to reference the review dataset)
Basic Statistics:
Questions: 1.48 million
Answers: 4,019,744
Labeled yes/no questions: 309,419
Number of unique products with questions: 191,185
From website:
Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.
Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.
https://brightdata.com/licensehttps://brightdata.com/license
Unlock powerful insights with the Amazon Electronics dataset, offering access to millions of records from any Amazon domain. This dataset provides comprehensive data points such as product titles, descriptions, brand details, pricing (initial and discounted), availability, customer ratings, reviews, and product categories. Additionally, it includes unique identifiers like ASINs, images, and seller information, allowing you to analyze product listings, trends, and customer preferences with precision. Use this dataset to optimize your eCommerce strategies by benchmarking competitor pricing, identifying top-performing brands, and tracking customer sentiment through reviews and ratings. Gain valuable insights into consumer demand, seasonal trends, and market gaps to make data-driven decisions that enhance your inventory management, marketing campaigns, and pricing strategies. Whether you’re a retailer, marketer, data analyst, or researcher, the Amazon Electronics dataset empowers you with the data needed to stay competitive in the dynamic eCommerce landscape. Available in various formats such as JSON, CSV, and Parquet, and delivered via flexible options like API, S3, or email, this dataset ensures seamless integration into your workflows.
This dataset contains longitudinal purchases data from 5027 Amazon.com users in the US, spanning 2018 through 2022: amazon-purchases.csv It also includes demographic data and other consumer level variables for each user with data in the dataset. These consumer level variables were collected through an online survey and are included in survey.csv fields.csv describes the columns in the survey.csv file, where fields/survey columns correspond to survey questions. The dataset also contains the survey instrument used to collect the data. More details about the survey questions and possible responses, and the format in which they were presented can be found by viewing the survey instrument. A 'Survey ResponseID' column is present in both the amazon-purchases.csv and survey.csv files. It links a user's survey responses to their Amazon.com purchases. The 'Survey ResponseID' was randomly generated at the time of data collection. amazon-purchases.csv Each row in this file corresponds to an Amazon order. Each such row has the following columns: Survey ResponseID Order date Shipping address state Purchase price per unit Quantity ASIN/ISBN (Product Code) Title Category The data were exported by the Amazon users from Amazon.com and shared by users with their informed consent. PII and other information not listed above were stripped from the data. This processing occurred on users' machines before sharing with researchers.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset comprises customer reviews for Amazon, an online retail giant, featuring insights into customer experiences, including ratings, review titles, texts, and metadata. It is valuable for analyzing customer satisfaction, sentiment, and trends.
Column Descriptions:
Reviewer Name: Identifies the reviewer. Profile Link: Links to the reviewer's profile for additional insights. Country: Indicates the reviewer's location. Review Count: Number of reviews by the same user, showing engagement level. Review Date: When the review was posted, useful for time analysis. Rating: Numerical satisfaction measure. Review Title: Summarizes the review sentiment. Review Text: Detailed customer feedback. Date of Experience: When the service/product was experienced.
Prospective applications:
Sentiment Analysis: Analyze review texts and titles to assess overall customer sentiment toward products, enabling the identification of strengths and weaknesses. Customer Satisfaction Tracking: Track and visualize rating trends over time to understand fluctuations in customer satisfaction. Product Improvement: Identify common themes in reviews to highlight areas for product enhancement or development. Market Segmentation: Use country and demographic information to customize marketing strategies and gain insights into regional preferences. Competitor Analysis: Evaluate customer feedback on Amazon products in comparison to competitors to determine market positioning. Recommendation Systems: Leverage review data to enhance recommendation algorithms, improving personalized shopping experiences. Trend Analysis: Investigate temporal patterns in reviews to link sentiment changes with marketing efforts or product launches.
This extensive dataset serves as a valuable asset for various analyses focused on enhancing customer engagement and refining business strategies.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Gain insights into Amazon’s beauty and personal care market with this comprehensive Amazon Beauty Products Dataset. Covering 47,000 records across skincare, haircare, and makeup, this dataset provides full ingredient lists, product descriptions, pricing, and availability. Ideal for researchers and businesses focused on ingredient transparency, beauty trend analysis, and competitive market insights. Perfect for applications in ingredient research, product development, and e-commerce analysis.
Access a rich Amazon Beauty & Cosmetics dataset with over 200,000+ product records, including detailed ingredients.
Explore more on our Beauty & Cosmetics Data page or view the full Amazon Beauty Dataset
Walmart product dataset featuring detailed ingredient information across categories like beauty, food, personal care, and more.
View Dataset →
The dataset includes the following fields:
This dataset is invaluable for:
Whether you’re focused on skincare, haircare, makeup, or other beauty categories, this dataset provides in-depth information for deep analysis. For any custom requirements or additional data needs, please feel free to reach out.
Amazon AWS - Cloud Platforms & Services
Companies using Amazon AWS
We have data on 1,070,574 companies that use Amazon AWS. The companies using Amazon AWS are most often found in United States and in the Computer Software industry. Amazon AWS is most often used by companies with 10-50 employees and 1M-10M dollars in revenue. Our data for Amazon AWS usage goes back as far as 2 years and 1 months.
What is Amazon AWS?
Amazon Web Services (AWS) is a collection of remote computing services, also called web services that make up a cloud computing platform offered by Amazon.com.
Top Industries that use Amazon AWS
Looking at Amazon AWS customers by industry, we find that Computer Software (6%) is the largest segment.
Distribution of companies using Amazon AWS by Industry
Computer software - 67, 537 companies Hospitals & Healthcare - 54, 293 companies Retail - 39, 543 companies Information Technology and Services - 35, 382 companies Real Estate - 31, 676 companies Restaurants - 30, 302 companies Construction - 29, 207 companies Automotive - 28, 469 companies Financial Services - 23, 680 companies Education Management - 21, 548 companies
Top Countries that use Amazon AWS
49% of Amazon AWS customers are in United States and 7% are in United Kingdom.
Distribution of companies using Amazon AWS by country
United Sates – 616 2275 companies United Kingdom – 68 219 companies Australia – 44 601 companies Canada – 42 770 companies Germany – 31 541 companies India – 30 949 companies Netherlands – 19 543 companies Brazil – 17 165 companies Italy – 14 876 companies Spain – 14 675 companies
Contact Information of Fields Include:-
• Company Name
• Business contact number
• Title
• Name
• Email Address
• Country, State, City, Zip Code
• Phone, Mobile and Fax
• Website
• Industry
• SIC & NAICS Code
• Employees Size
• Revenue Size
• And more…
Why Buy AWS Users List from DataCaptive?
• More than 1,070,574 companies
• Responsive database
• Customizable as per your requirements
• Email and Tele-verified list
• Team of 100+ market researchers
• Authentic data sources
What’s in for you?
Over choosing us, here are a few advantages we authenticate-
• Locate, target, and prospect leads from 170+ countries • Design and execute ABM and multi-channel campaigns • Seamless and smooth pre-and post-sale customer service • Connect with old leads and build a fruitful customer relationship • Analyze the market for product development and sales campaigns • Boost sales and ROI with increased customer acquisition and retention
Our security compliance
We use of globally recognized data laws like –
GDPR, CCPA, ACMA, EDPS, CAN-SPAM and ANTI CAN-SPAM to ensure the privacy and security of our database. We engage certified auditors to validate our security and privacy by providing us with certificates to represent our security compliance.
Our USPs- what makes us your ideal choice?
At DataCaptive™, we strive consistently to improve our services and cater to the needs of businesses around the world while keeping up with industry trends.
• Elaborate data mining from credible sources • 7-tier verification, including manual quality check • Strict adherence to global and local data policies • Guaranteed 95% accuracy or cash-back • Free sample database available on request
Guaranteed benefits of our Amazon AWS users email database!
85% email deliverability and 95% accuracy on other data fields
We understand the importance of data accuracy and employ every avenue to keep our database fresh and updated. We execute a multi-step QC process backed by our Patented AI and Machine learning tools to prevent anomalies in consistency and data precision. This cycle repeats every 45 days. Although maintaining 100% accuracy is quite impractical, since data such as email, physical addresses, and phone numbers are subjected to change, we guarantee 85% email deliverability and 95% accuracy on other data points.
100% replacement in case of hard bounces
Every data point is meticulously verified and then re-verified to ensure you get the best. Data Accuracy is paramount in successfully penetrating a new market or working within a familiar one. We are committed to precision. However, in an unlikely event where hard bounces or inaccuracies exceed the guaranteed percentage, we offer replacement with immediate effect. If need be, we even offer credits and/or refunds for inaccurate contacts.
Other promised benefits
• Contacts are for the perpetual usage • The database comprises consent-based opt-in contacts only • The list is free of duplicate contacts and generic emails • Round-the-clock customer service assistance • 360-degree database solutions
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Operating-Expenses Time Series for Amazon.com Inc. Amazon.com, Inc. engages in the retail sale of consumer products, advertising, and subscriptions service through online and physical stores in North America and internationally. The company operates through three segments: North America, International, and Amazon Web Services (AWS). It also manufactures and sells electronic devices, including Kindle, fire tablets, fire TVs, echo, ring, blink, and eero; and develops and produces media content. In addition, the company offers programs that enable sellers to sell their products in its stores; and programs that allow authors, independent publishers, musicians, filmmakers, Twitch streamers, skill and app developers, and others to publish and sell content. Further, it provides compute, storage, database, analytics, machine learning, and other services, as well as advertising services through programs, such as sponsored ads, display, and video advertising. Additionally, the company offers Amazon Prime, a membership program. The company's products offered through its stores include merchandise and content purchased for resale and products offered by third-party sellers. It serves consumers, sellers, developers, enterprises, content creators, advertisers, and employees. Amazon.com, Inc. was incorporated in 1994 and is headquartered in Seattle, Washington.
From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.
This dataset consists of reviews of fine foods from amazon. The data span a period of more than 10 years, including all ~500,000 reviews up to October 2012. Reviews include product and user information, ratings, and a plaintext review. Number of reviews -> 568,454 Number of users -> 256,059 Number of products -> 74,258
Citation - J. McAuley and J. Leskovec. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews WWW, 2013.
https://brightdata.com/licensehttps://brightdata.com/license
Buy Amazon Fashion datasets and get access to millions of records from any Amazon domain. Gain insights on fashion products, sellers, and customer reviews.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Depreciation-and-Amortization-Expense Time Series for Amazon.com Inc. Amazon.com, Inc. engages in the retail sale of consumer products, advertising, and subscriptions service through online and physical stores in North America and internationally. The company operates through three segments: North America, International, and Amazon Web Services (AWS). It also manufactures and sells electronic devices, including Kindle, fire tablets, fire TVs, echo, ring, blink, and eero; and develops and produces media content. In addition, the company offers programs that enable sellers to sell their products in its stores; and programs that allow authors, independent publishers, musicians, filmmakers, Twitch streamers, skill and app developers, and others to publish and sell content. Further, it provides compute, storage, database, analytics, machine learning, and other services, as well as advertising services through programs, such as sponsored ads, display, and video advertising. Additionally, the company offers Amazon Prime, a membership program. The company's products offered through its stores include merchandise and content purchased for resale and products offered by third-party sellers. It serves consumers, sellers, developers, enterprises, content creators, advertisers, and employees. Amazon.com, Inc. was incorporated in 1994 and is headquartered in Seattle, Washington.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains information on the quality and sales of products on Amazon, as well as on the percentage of time that Amazon's own products are featured in the Buy Box. It also includes data on the top searches and generic searches on Amazon, as well as on the percentage of panelists who ranked each trait as very important or somewhat important when choosing a product on Amazon
- Determine which features are most important to customers when they are shopping on Amazon.
- Understand how Amazon's own products compare to other products in terms of quality and sales.
- Study how Amazon's marketing and ranking algorithms work, in order to optimize product listings on the site
Acknowledgements The datasets used in this article were provided by The Markup
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: combined_queries_with_source.csv | Column name | Description | |:----------------|:-----------------------------------------| | search_term | The search term used on Amazon. (String) | | source | The source of the search term. (String) |
File: quality_and_sales_comparisons.csv | Column name | Description | |:-------------------------------------|:----------------------------------------------------------------------------------------------| | search_term | The search term used on Amazon. (String) | | position_first_amazon | The position of the first Amazon product in the search results. (Integer) | | position_first_non_amazon | The position of the first non-Amazon product in the search results. (Integer) | | position_first_wholly_non_amazon | The position of the first wholly non-Amazon product in the search results. (Integer) | | amazon_stars | The average star rating for Amazon products in the search results. (Float) | | amazon_reviews | The average number of reviews for Amazon products in the search results. (Integer) | | non_amazon_stars | The average star rating for non-Amazon products in the search results. (Float) | | non_amazon_reviews | The average number of reviews for non-Amazon products in the search results. (Integer) | | wnon_amazon_stars | The average star rating for wholly non-Amazon products in the search results. (Float) | | wnon_amazon_reviews | The average number of reviews for wholly non-Amazon products in the search results. (Integer) |
File: amazon_trademarked_brands.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Word Mark | The word mark of the product. (String) | | Goods and Services | The goods and services associated with the product. (String) | | Filing Date | The date on which the product was filed. (Date) |
File: fig2-scatter.csv | Column name | Description | |:-------------------|:----------------------------------------------------------------------------------------------------| | **** | | | Category | The category of the product. (String) | | Perc Products | The percentage of products in the category that are sponsored. (Float) | | Perc #1 spot | The percentage of products in the category that are in the #1 spot in the search results. (Float) | | Perc first row | The percentage of products in the category that are in the first row of the search results. (Float) |
File: fig3a-heatmap_amzn.csv | Column name | Description | |:-----...
https://brightdata.com/licensehttps://brightdata.com/license
Gain extensive insights with our Amazon datasets, encompassing detailed product information including pricing, reviews, ratings, brand names, product categories, sellers, ASINs, images, and much more. Ideal for market researchers, data analysts, and eCommerce professionals looking to excel in the competitive online marketplace. Over 425M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Title Asin Main Image Brand Name Description Availability Subcategory Categories Parent Asin Type Product Type Name Model Number Manufacturer Color Size Date First Available Released Model Year Item Model Number Part Number Price Total Reviews Total Ratings Average Rating Features Best Sellers Rank Subcategory Buybox Buybox Seller Id Buybox Is Amazon Images Product URL And more