8 datasets found
  1. Annual Count of Hot Summer Days - Projections (12km)

    • climatedataportal.metoffice.gov.uk
    • roadmap-to-climate-resilience-tep-thames.hub.arcgis.com
    Updated Feb 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Annual Count of Hot Summer Days - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/TheMetOffice::annual-count-of-hot-summer-days-projections-12km/about
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.2.]What does the data show? The Annual Count of Hot Summer Days is the number of days per year where the maximum daily temperature is above 30°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘hot summer days’ is used to refer to the threshold and temperatures above 30°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Hot Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of hot summer days to previous values.What are the possible societal impacts?The Annual Count of Hot Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 30°C. Impacts include:Increased heat related illnesses, hospital admissions or death.Transport disruption due to overheating of railway infrastructure. Overhead power lines also become less efficient. Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Extreme Summer Days (days above 35°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Hot Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Hot Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Hot Summer Days show the number of hot summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘HSD’ (where HSD means Hot Summer Days), the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Hot Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Hot Summer Days 2.5 median’ is ‘HotSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HSD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Hot Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  2. Annual Heating Degree Days - Projections (12km)

    • climatedataportal.metoffice.gov.uk
    Updated May 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Annual Heating Degree Days - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/TheMetOffice::annual-heating-degree-days-projections-12km/about
    Explore at:
    Dataset updated
    May 22, 2023
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  3. Energy Trends: UK weather

    • gov.uk
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Trends: UK weather [Dataset]. https://www.gov.uk/government/statistics/energy-trends-section-7-weather
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Energy Security and Net Zero
    Area covered
    United Kingdom
    Description

    These statistics show quarterly and monthly weather trends for:

    • temperatures
    • heating degree days
    • wind speed
    • sun hours
    • rainfall

    They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.

    Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.

    All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.

    ​Contact us​

    If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.

  4. w

    London’s Urban Heat Island - During A Warm Summer

    • data.wu.ac.at
    • gimi9.com
    html, pdf
    Updated Mar 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (GLA) (2018). London’s Urban Heat Island - During A Warm Summer [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/NmQ0ZjYxMDQtMGY1Yy00YWU5LWE1NmUtZjVlMTA3MDRkZDQ2
    Explore at:
    html, pdfAvailable download formats
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    Greater London Authority (GLA)
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    London
    Description

    For an urban heat island map during an average summer see this dataset. A heatwave refers to a prolonged period of unusually hot weather. While there is no standard definition of a heatwave in England, the Met Office uses the World Meteorological Organization definition of a heatwave, which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, the normal period being 1961-1990". They are common in the northern and southern hemisphere during summer have historically been associated with health problems and an increase in mortality. The urban heat island (UHI) is the phenomenon where temperatures are relatively higher in cities compared to surrounding rural areas due to, for example, the urban surfaces and anthropogenic heat sources. This urban heat island map was produced using LondUM, a specific set-up of the Met Office Unified Model version 6.1 for London. It uses the Met Office Reading Surface Exchange Scheme (MORUSES), as well as urban morphology data derived from Virtual London. The model was run from May until September 2006 and December 2006. This map shows average surface temperatures over the summer period of 2006 at a 1km by 1km resolution. To find out more about LondUM, see the University of Reading’s website. The hourly outputs from LondUM have been aggregated and mapped by Jonathon Taylor, UCL Institute for Environmental Design and Engineering. Variables include: WSAVGMAX= the average of the maximum daily temperatures across the summer period (May 26th-August 31st) WSAVG=the average temperature across the summer period WSAVGMIN = the average minimum daily temperature across the summer period HWAVGMAX= the average of the maximum daily temperatures across the 2006 heatwave (July 16th-19th) HWAVG=the average temperature across the across the 2006 heatwave HWAVGMIN = the average minimum daily temperature across 2006 heatwave period The maps are also available as one combined PDF. The gif below maps the temperatures across London during the four-day period of 16-19th July, which was considered a heatwave. If you make use of the LondUM data, please use the following citation to acknowledge the data and reference the publication below for model description: LondUM (2011). Model data generated by Sylvia I. Bohnenstengel (), Department of Meteorology, University of Reading and data retrieved from http://www.met.reading.ac.uk/~sws07sib/home/LondUM.html. () Now at Metoffice@Reading, Email: sylvia.bohnenstengel@metoffice.gov.uk Bohnenstengel SI, Evans S, Clark P and Belcher SeE (2011) Simulations of the London Urban Heat island. Quarterly journal of the Royal Meteorological Society, 137(659). pp. 1625-1640. ISSN 1477-870X doi 10.1002/qj.855. LondUM data (2013).

  5. MIDAS Open: UK hourly weather observation data, v201901

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Feb 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2019). MIDAS Open: UK hourly weather observation data, v201901 [Dataset]. https://catalogue.ceda.ac.uk/uuid/c58c1af69b9745fda4cdf487a9547185
    Explore at:
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Met Office
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1875 - Dec 31, 2017
    Area covered
    Description

    The UK hourly weather observation data contain meteorological values measured on an hourly time scale. The measurements of the concrete state, wind speed and direction, cloud type and amount, visibility, and temperature were recorded by observation stations operated by the Met Office across the UK and transmitted within SYNOP, DLY3208, AWSHRLY and NCM messages. The sunshine duration measurements were transmitted in the HSUN3445 message. The data spans from 1875 to 2017.

    For details on observing practice see the message type information in the MIDAS User Guide linked from this record and relevant sections for parameter types.

    This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Note, METAR message types are not included in the Open version of this dataset. Those data may be accessed via the full MIDAS hourly weather data.

  6. w

    Mortality Risk from High Temperatures in London (Triple Jeopardy Mapping)

    • data.wu.ac.at
    html
    Updated Mar 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (GLA) (2018). Mortality Risk from High Temperatures in London (Triple Jeopardy Mapping) [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/ZmUwZTI2YWMtNWYxNC00MTRkLTg0YWYtMzY3OTdhODI3YWMw
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    Greater London Authority (GLA)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    London
    Description

    A heatwave refers to a prolonged period of unusually hot weather. While there is no standard definition of a heatwave in England, the Met Office generally uses the World Meteorological Organization definition of a heatwave, which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, the normal period being 1961-1990". They are common in the northern and southern hemisphere during summer, and have historically been associated with health problems and an increase in mortality. The urban heat island (UHI) is the phenomenon where temperatures are relatively higher in cities compared to surrounding rural areas due to, for example, the urban surfaces and anthropogenic heat sources. For an example of an urban heat island map during an average summer, see this dataset. For an example of an urban heat island map during a warm summer, see this dataset. As well as outdoor temperature, an individual’s heat exposure may also depend on the type of building they are inside, if indoors. Indoor temperature exposure may depend on a number of characteristics, such as the building geometry, construction materials, window sizes, and the ability to add extra ventilation. It is also known that people have different vulnerabilities to heat, with some more prone to negative health issues when exposed to high temperatures. This Triple Jeopardy dataset combines: Urban Heat Island information for London, based on the 55 days between May 26th -July 19th 2006, where the last four days were considered a heatwave An estimate of the indoor temperatures for individual dwellings in London across this time period Population age, as a proxy for heat vulnerability, and distribution From this, local levels of heat-related mortality were estimated using a mortality model derived from epidemiological data. The dataset comprises four layers: Ind_Temp_A – indoor Temperature Anomaly is the difference in degrees Celsius between the estimated indoor temperatures for dwellings and the average indoor temperature estimate for the whole of London, averaged by ward. Positive numbers show dwellings with a greater tendency to overheat in comparison with the London average HeatMortpM – total estimated mortality due to heat (outdoor and indoor) per million population over the entire 55 day period, inclusive of age effects HeatMorUHI – estimated mortality per million population due to increased outdoor temperature exposure caused by the UHI over the 55 day period (excluding the effect of overheating housing), inclusive of age effects HeatMorInd - estimated mortality per million population due to increased temperature exposure caused by heat-vulnerable dwellings (excluding the effect of the UHI) over the 55 day period, inclusive of age effects More information is on this website and in the Triple Jeopardy leaflet. The maps are also available as one combined PDF. More information is on this website and in the Triple Jeopardy leaflet.

  7. T

    United Kingdom Average Temperature

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United Kingdom Average Temperature [Dataset]. https://tradingeconomics.com/united-kingdom/temperature
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United Kingdom
    Description

    Temperature in the United Kingdom increased to 10.14 celsius in 2023 from 10.13 celsius in 2022. This dataset includes a chart with historical data for the United Kingdom Average Temperature.

  8. c

    Grounded Energy Modelling for Equitable Urban Planning Development in the...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin, W; Marion, V; Oraiopoulos, A; Pamela, F; Ruyssevelt, P (2025). Grounded Energy Modelling for Equitable Urban Planning Development in the Global South: Internal Temperatures, Lima, Peru, 2021-2023 [Dataset]. http://doi.org/10.5255/UKDA-SN-857127
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    PUCP
    UCL
    Authors
    Martin, W; Marion, V; Oraiopoulos, A; Pamela, F; Ruyssevelt, P
    Time period covered
    Dec 23, 2021 - Feb 28, 2023
    Area covered
    Lima, Peru
    Variables measured
    Household, Housing Unit, Time unit
    Measurement technique
    For the internal temperatures: Hourly measured using Hobo data loggers. For the external weather in JCM, high precision relevant instrumentation was installed and used.
    Description

    This dataset includes the hourly mesured internal temperatures (in degrees celsious) from houses in the settlements of Jose Carlos Mariategui (JCM), Barrios Altos, El Agustino in Lima, Peru, during the years 2021, 2022 and 2023. For JCM and Barrios Altos the types of houses are also given in terms of thermal mass as well as the basic construction details of each house. For JCM the external weather conditions were also measured (External temperature, Solar radiation, wind speed, wind direction) and are made part of the dataset for the same timeframe. For Barrios Altos and El Agustino, the exernal weather data are retrieved from SENAMHI.

    Grounded Energy Modelling for equitable urban planning in the global South (GEMDev) is a partnership between UCL (London), FCPV and PUCP (Lima) and CDRF-CEPT (Ahmedabad), which aims to create new knowledge to ground energy planning tools in the realities of everyday life and energy practices of off-grid communities.

    Insecure and informal access to energy impacts on all aspects of life for poor communities living in sub-standard housing in the global South. Access to affordable, reliable and safe forms of energy services has particularly profound effects on health and economic opportunities. However, the ways in which these communities access and use energy in their day-to-day lives are poorly understood. The ways in which those practices change when informal settlements are upgraded or relocated are equally poorly understood.

    As data-driven approaches to energy planning, such as Urban Building Energy Models (UBEMs), gain increasing importance as planning tools, this lack of understanding risks further marginalising the most vulnerable communities as their needs are either entirely overlooked or planned solutions fail to address their needs. UBEMs have been developed in, and widely applied to, cities in the global North to model urban energy consumption on a building by building basis, allowing the assessment of impacts of different energy conservation measures and policies. Such tools are highly attractive to energy planners in the global South, but the complexity of informal settlements is wholly absent from these models at present.

    GEMDev will use participatory research methods to co-create datasets with marginalised communities to ensure that they are represented in the UBEMs of the future. Engaging these communities in the creation of the knowledge and datasets in order to represent them in energy planning tools is a highly novel approach which not only ensures meaningful recognition, but, through the research process itself, increases communities' capacity and skills, amplifying their voice in the planning processes that have profound impacts on their lives.

    Lima and Ahmedabad have been selected as the cases for application of the GEMDev project for both methodological and practical reasons. From a methodological perspective, both are global cities characterised by significant inequalities in access to energy and other services but with very different histories of development and policies for addressing the needs of the urban poor. From a practical perspective, we will build on strong existing research partnerships in both cities. The UCL/FCPV partnership in Lima contributes expertise in participatory methods and strong engagement with municipal authorities, while capacity in building energy modelling will be built through an innovative approach between private and public universities, PUCP and UNI. The UCL/CDRF-CEPT partnership in Ahmedabad contributes expertise in energy modelling and the project will build capacity in participatory methods. The strong focus on South-South knowledge transfer is a key example of the equitable partnerships which underpin this project.

    GEMDev will deliver a robust, co-produced evidence base on energy practices, use of space and urban form in Lima and Ahmedabad. This will be used to not only support the local development of UBEMs for these cities, but also to co-create alternative archetypes of the off-grid city. These findings can inform city, national and regional policies that support the delivery of multiple Sustainable Development Goals (SDG), including SDG7 on energy, SDG11 on sustainable cities and communities, and beyond. The inclusion of partners and stakeholders in developing this proposal will help to ensure the project delivers real and long-lasting change for marginalised, off-grid communities in the global South.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Met Office (2023). Annual Count of Hot Summer Days - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/TheMetOffice::annual-count-of-hot-summer-days-projections-12km/about
Organization logo

Annual Count of Hot Summer Days - Projections (12km)

Explore at:
Dataset updated
Feb 7, 2023
Dataset authored and provided by
Met Officehttp://www.metoffice.gov.uk/
Area covered
Description

[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.2.]What does the data show? The Annual Count of Hot Summer Days is the number of days per year where the maximum daily temperature is above 30°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘hot summer days’ is used to refer to the threshold and temperatures above 30°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Hot Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of hot summer days to previous values.What are the possible societal impacts?The Annual Count of Hot Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 30°C. Impacts include:Increased heat related illnesses, hospital admissions or death.Transport disruption due to overheating of railway infrastructure. Overhead power lines also become less efficient. Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Extreme Summer Days (days above 35°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Hot Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Hot Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Hot Summer Days show the number of hot summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘HSD’ (where HSD means Hot Summer Days), the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Hot Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Hot Summer Days 2.5 median’ is ‘HotSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HSD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Hot Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

Search
Clear search
Close search
Google apps
Main menu