Facebook
TwitterThis dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterThe leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.
Report last ran: 09/24/2019
Facebook
TwitterThis dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset reports the daily reported number of deaths involving COVID-19 by fatality type.
Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool
Data includes:
The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
As of December 1, 2022, data are based on the date on which the death occurred. This reporting method differs from the prior method which is based on net change in COVID-19 deaths reported day over day.
Data are based on net change in COVID-19 deaths for which COVID-19 caused the death reported day over day. Deaths are not reported by the date on which death happened as reporting may include deaths that happened on previous dates.
Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.
Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.
Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the number of deaths involving COVID-19 reported.
"_Cause of death unknown_" is the category of death for COVID-19 positive individuals with cause of death still under investigation, or for which the public health unit was unable to determine cause of death. The category may change later when the cause of death is confirmed either as “COVID-19 as the underlying cause of death”, “COVID-19 contributed but not underlying cause,” or “COVID-19 unrelated”.
"_Cause of death missing_" is the category of death for COVID-19 positive individuals with the cause of death missing in CCM.
Rates for the most recent days are subject to reporting lags
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
Facebook
TwitterNumber and percentage of deaths, by month and place of residence, 1991 to most recent year.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains information on fatal police deaths in the United States. The data includes the victim's rank, name, department, date of death, and cause of death. The data spans from 1791 to the present day. This dataset will be updated on monthly basis. Data Scrapped from this website :- https://www.odmp.org/
New Version Features -> With the new web scrapper I have upgraded dataset with more information. 1) The new dataset version is "police_deaths_USA_v6.csv" and "k9_deaths_USA_v6.csv". 2) Splitted the dataset into 2 different datasets 1 for Human Unit and other for K9 Unit. 3) Check out the new web scrapper code in this file "final_scrapper_program_with_comments.ipynb". 4) Also added the correction file which is needed to adjust some data points from K9 dataset. 5) Extended data of Human Unit dataset to 13 Features. 6) Extended data of K9 Unit dataset to 14 Features.
The police_deaths dataset contains 13 variables:
1) Rank -> Rank assigned or achieved by the police throughout their tenure.
2) Name -> The name of the person.
3) Age -> Age of the person.
4) End_Of_Watch -> The death date on which the the person declared as dead.
5) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].
6) Cause -> The cause of the death.
7) Department -> The department's name where the person works.
8) State -> The state where the department is situated.
9) Tour -> The Duration of there Tenure.
10) Badge -> Badge of the person.
11) Weapon -> The Weapon by which the officer has been killed.
12) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].
13) Summary -> Summary of the police officer and also the summary of the incident of what happened ? How he/she died ?, etc.
The k9_deaths dataset contains 14 variables:
1) Rank -> Rank assigned or achieved by the K9 throughout their tenure.
2) Name -> The name of the K9.
3) Breed -> Breed of the K9.
4) Gender -> Gender of the K9.
5) Age -> Age of the K9.
6) End_Of_Watch -> The death date on which the the person declared as dead.
7) Day_Of_Week -> The day of the week [Sunday, Monday, etc.].
8) Cause -> The cause of the death.
9) Department -> The department's name where the K9 was assigned.
10) State -> The state where the department is situated.
11) Tour -> The Duration of there Tenure.
12) Weapon -> The Weapon by which the officer has been killed.
13) Offender -> Offender / Killer this says what happened to the offender after the incident was he/she [Arrested, Killed, etc.].
14) Summary -> Summary of the K9 dog and also the summary of the incident of what happened ? How he/she died ?, etc.
Acknowledgements:
The original dataset was collected by FiveThirtyEight and it contains police death data from 1791 to 2016. Here is the link -> https://data.world/fivethirtyeight/police-deaths.
The reason I made this dataset is because it had not been updated since 2016 and the scrapping script was outdated, so I decided to make a new scrapper and update the dataset till present. I got this idea from the FiveThirtyEight group and a fellow kaggler, Satoshi Datamoto, who uploaded the dataset on kaggle. Thank you for inspiration.
Tableau Visualization link :- https://public.tableau.com/app/profile/mayuresh.koli/viz/USALawEnforcementLineofDutyDeaths/main_dashboard
Facebook
TwitterEffective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected.
Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Facebook
TwitterTHIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterNote: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.
This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.
The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.
The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.
The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.
Facebook
TwitterNumber and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterNumber of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Town of Cary [source]
The Town of Cary Crash Database contains five years worth of detailed crash data up to the current date. Each incident is mapped based on National Incident-Based Reporting System (NIBRS) criteria, providing greater accuracy and access to all available crashes in the County.
This valuable resource is constantly being updated – every day fresh data is added and older records are subject to change. The locations featured in this dataset reflect approximate points of intersection or impact. In cases when essential detail elements are missing or rendered unmapable, certain crash incidents may not appear on maps within this source.
We invite you to explore how crashes have influenced the Town of Cary over the past five years – from changes in weather conditions and traffic controls to vehicular types, contributing factors, travel zones and more! Whether it's analyzing road design elements or assessing fatality rates – come take a deeper look at what has shaped modern day policies for safe driving today!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Understanding Data Elements – The first step in using this dataset is understanding what information is included in it. The data elements include location descriptions, road features, character traits of roads and more that are associated with each crash. Additionally, the data provides details about contributing factors, light conditions, weather conditions and more that can be used to understand why certain crashes happen in certain locations or under certain circumstances.
- Analyzing trends in crash locations to better understand where crashes are more likely to occur. For example, using machine learning techniques and geographical mapping tools to identify patterns in the data that could enable prediction of future hotspots of crashes.
- Investigating the correlations between roadway characteristics (e.g., surface, configuration and class) and accident severities in order to recommend improvements or additional preventative measures at certain intersections or road segments which may help reduce crash-related fatalities/injuries.
- Using data from various contributing factors (e.g., traffic control, weather conditions, work area) as an input for a predictive model for analyzing the risk factors associated with different types of crashes such as head-on collisions, rear-end collisions or side swipe accidents so that safety alerts can be issued for public awareness campaigns during specific times/days/conditions where such incidents have been known to occur more often or have increased severity repercussions than usual (i.e., near schools during school days)
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: crash-data-3.csv | Column name | Description | |:--------------|:-----------------------------------------------------------------------------------------------------| | type | The type of crash, such as single-vehicle, multi-vehicle, or pedestrian. (String) | | features | The features of the crash, such as location, contributing factors, vehicle types, and more. (String) |
File: crash-data-1.csv | Column name | Description | |:-------------------------|:----------...
Facebook
TwitterThis file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Facebook
TwitterThis dataset reports the daily reported number of deaths involving COVID-19 by fatality type. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Total number of deaths involving COVID-19 * Number of deaths with “COVID-19 as the underlying cause of death” * Number of deaths with “COVID-19 contributed but not underlying cause” * Number of deaths where the “Cause of death unknown” or “Cause of death missing” ##Additional Notes The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. As of December 1, 2022, data are based on the date on which the death occurred. This reporting method differs from the prior method which is based on net change in COVID-19 deaths reported day over day. Data are based on net change in COVID-19 deaths for which COVID-19 caused the death reported day over day. Deaths are not reported by the date on which death happened as reporting may include deaths that happened on previous dates. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the number of deaths involving COVID-19 reported. "Cause of death unknown" is the category of death for COVID-19 positive individuals with cause of death still under investigation, or for which the public health unit was unable to determine cause of death. The category may change later when the cause of death is confirmed either as “COVID-19 as the underlying cause of death”, “COVID-19 contributed but not underlying cause,” or “COVID-19 unrelated”. "Cause of death missing" is the category of death for COVID-19 positive individuals with the cause of death missing in CCM. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19.
Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by the jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected.
Estimates of excess deaths can be calculated in a variety of ways and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Dashboard: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://raw.githubusercontent.com/kabartay/kaggle-datasets-supports/master/images/WeeklyExcessDeaths.png%20=1349x572" alt="">
Thanks to:
- data.cdc.gov
- healthdata.gov
Facebook
TwitterIn 1985 the population and health observatory was established at Mlomp, in the region of Ziguinchor, in southern Senegal (see map). The objective was to complement the two rural population observatories then existing in the country, Bandafassi, in the south-east, and Niakhar, in the centre-west, with a third observatory in a region - the south-west of the country (Casamance) - whose history, ethnic composition and economic situation were quite different from those of the regions where the first two observatories were located. It was expected that measuring the demographic levels and trends on those three sites would provide better coverage of the demographic and epidemiological diversity of the country.
Following a population census in 1984-1985, demographic events and causes of death have been monitored yearly. During the initial census, all women were interviewed concerning the birth and survival of their children. Since 1985, yearly censuses, usually conducted in January-February, have been recording demographic data, including all births, deaths, and migrations. The completeness and accuracy of dates of birth and death are cross-checked against those of registers of the local maternity ward (_95% of all births) and dispensary (all deaths are recorded, including those occurring outside the area), respectively. The study area comprises 11 villages with approximately 8000 inhabitants, mostly Diola. Mlomp is located in the Department of Oussouye, Region of Ziguinchor (Casamance), 500 km south of Dakar.
On 1 January 2000 the Mlomp area included a population of 7,591 residents living in 11 villages. The population density was 108 people per square kilometre. The population belongs to the Diola ethnic group, and the religion is predominantly animist, with a large minority of Christians and a few Muslims. Though low, the educational level - in 2000, 55% of women aged 15-49 had been to school (for at least one year) - is definitely higher than at Bandafassi. The population also benefits from much better health infrastructure and programmes. Since 1961, the area under study has been equipped with a private health centre run by French Catholic nurses and, since 1968, a village maternity centre where most women give birth. The vast majority of the children are totally immunized and involved in a growth-monitoring programme (Pison et al.,1993; Pison et al., 2001).
The Mlomp DSS site, about 500 km from the capital, Dakar, in Senegal, lies between latitudes 12°36' and 12°32'N and longitudes 16°33' and 16°37'E, at an altitude ranging from 0 to 20 m above sea level. It is in the region of Ziguinchor, Département of Oussouye (Casamance), in southwest Senegal. It is locates 50 km west of the city of Ziguinchor and 25 kms north of the border with Guinea Bissau. It covers about half the Arrondissement of Loudia-Ouolof. The Mlomp DSS site is about 11 km × 7 km and has an area of 70 km2. Villages are households grouped in a circle with a 3-km diameter and surrounded by lands that are flooded during the rainy season and cultivated for rice. There is still no electricity.
Individual
At the census, a person was considered a member of the compound if the head of the compound declared it to be so. This definition was broad and resulted in a de jure population under study. Thereafter, a criterion was used to decide whether and when a person was to be excluded or included in the population.
A person was considered to exit from the study population through either death or emigration. Part of the population of Mlomp engages in seasonal migration, with seasonal migrants sometimes remaining 1 or 2 years outside the area before returning. A person who is absent for two successive yearly rounds, without returning in between, is regarded as having emigrated and no longer resident in the study population at the date of the second round. This definition results in the inclusion of some vital events that occur outside the study area. Some births, for example, occur to women classified in the study population but physically absent at the time of delivery, and these births are registered and included in the calculation of rates, although information on them is less accurate. Special exit criteria apply to babies born outside the study area: they are considered emigrants on the same date as their mother.
A new person enters the study population either through birth to a woman of the study population or through immigration. Information on immigrants is collected when the list of compounds of a village is checked ("Are there new compounds or new families who settled since the last visit?") or when the list of members of a compound is checked ("Are there new persons in the compound since the last visit?"). Some immigrants are villagers who left the area several years before and were excluded from the study population. Information is collected to determine in which compound they were previously registered, to match the new and old information.
Information is routinely collected on movements from one compound to another within the study area. Some categories of the population, such as older widows or orphans, frequently move for short periods of time and live in between several compounds, and they may be considered members of these compounds or of none. As a consequence, their movements are not always declared.
Event history data
One round of data collection took place annually, except in 1987 and 2008.
No samplaing is done
None
Proxy Respondent [proxy]
List of questionnaires: - Household book (used to register informations needed to define outmigrations) - Delivery questionnaire (used to register information of dispensaire ol mlomp) - New household questionnaire - New member questionnaire - Marriage and divorce questionnaire - Birth and marital histories questionnaire (for a new member) - Death questionnaire (used to register the date of death)
On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.
No imputations were done on the resulting micro data set, except for:
a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an out-migration event (OMG)
In the case of the village that was added (enumerated) in 2006, some individuals may have outmigrated from the original surveillance area and setlled in the the new village prior to the first enumeration. Where the records of such individuals have been linked, and indivdiual can legitmately have and outmigration event (OMG) forllowed by and enumeration event (ENU). In a few cases a homestead exit event (EXT) was followed by an enumeration event in these cases. In these instances the EXT events were changed to an out-migration event (OMG).
On an average the response rate is about 99% over the years for each round.
Not applicable
CenterId Metric Table QMetric Illegal Legal Total Metric Rundate
SN012 MicroDataCleaned Starts 18756 2017-05-19 00:00
SN012 MicroDataCleaned Transitions 0 45136 45136 0 2017-05-19 00:00
SN012 MicroDataCleaned Ends 18756 2017-05-19 00:00
SN012 MicroDataCleaned SexValues 38 45098 45136 0 2017-05-19 00:00
SN012 MicroDataCleaned DoBValues 204 44932 45136 0 2017-05-19 00:00
Facebook
TwitterEstimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.
Facebook
TwitterThis dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.