The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly). Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
VITAL SIGNS INDICATOR
Fatalities From Crashes (EN4)
FULL MEASURE NAME
Fatalities from Crashes (traffic collisions)
LAST UPDATED
October 2022
DESCRIPTION
Fatalities from crashes refers to deaths as a result of fatalities sustained in collisions. The California Highway Patrol includes deaths within 30 days of the collision that are a result of fatalities sustained as part of this metric. This total fatalities dataset includes fatality counts for the region and counties, as well as individual collision data and metropolitan area data.
DATA SOURCE
National Highway Safety Administration: Fatality Analysis Reporting System - https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/FARS/
1990-2020
Caltrans: Highway Performance Monitoring System (HPMS) - https://dot.ca.gov/programs/research-innovation-system-information/highway-performance-monitoring-system
Annual Vehicle Miles Traveled (VMT)
2001-2020
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
1990-2020
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
1990-2020
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Fatalities from crashes data is reported to the National Highway Traffic Safety Administration through the Fatality Analysis Reporting System (FARS) program. Data for individual collisions is reported by the California Highway Patrol (CHP) to the Statewide Integrated Traffic Records System (SWITRS). The data was tabulated using provided categories specifying injury level, individuals involved, causes of collision and location/jurisdiction of collision (for more information refer to the SWITRS codebook - http://tims.berkeley.edu/help/files/switrs_codebook.doc). For case data, latitude and longitude information for each accident is geocoded by SafeTREC’s Transportation Injury Mapping System (TIMS). Fatalities were normalized over historic population data from the US Census Bureau’s population estimates and vehicle miles traveled (VMT) data from the Federal Highway Administration.
The crash data only include crashes that involved a motor vehicle. Bicyclist and pedestrian fatalities that did not involve a motor vehicle, such as a bicyclist and pedestrian collision or a bicycle crash due to a pothole, are not included in the data.
For more regarding reporting procedures and injury classification, refer to the CHP Manual - https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ca_chp555_manual_2_2003_ch1-13.pdf.
In 2021, more than 44,000 male drivers were involved in fatal crashes in U.S. road traffic, which accounted for 72.3 percent of the total, while female drivers were involved in about 15,100 fatal crashes. The number of drivers who were involved in fatal crashes has shown an increase of about 16.2 percent from 2016.
This indicator provides information about the mortality rate from motor vehicle crashes and traffic-related injuries, including among pedestrians. Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Motor vehicle crashes are a leading cause of death from unintentional injury both in Los Angeles County and in the US. While many factors contribute to motor vehicle crash mortality, the built environment plays a critical role. Communities that are exposed to heavy traffic or that lack adequate walking infrastructure for pedestrians have higher rates of motor vehicle crash-related injuries and deaths. They are also more impacted by traffic-related environmental hazards, such as vehicle emissions and air pollution. In Los Angeles County, many of these communities are also home to a large number of low-income residents. Thus, motor vehicle crash mortality can be viewed as an environmental justice issue.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
The Motor Vehicle Collisions person table contains details for people involved in the crash. Each row represents a person (driver, occupant, pedestrian, bicyclist,..) involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Road Fatalities: Per One Million Vehicle-km data was reported at 7.805 Ratio in 2023. This records a decrease from the previous number of 8.265 Ratio for 2022. United States US: Road Fatalities: Per One Million Vehicle-km data is updated yearly, averaging 8.404 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 10.731 Ratio in 1994 and a record low of 6.725 Ratio in 2014. United States US: Road Fatalities: Per One Million Vehicle-km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.ITF: Road Traffic and Road Accident Fatalities: OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made. ROAD TRAFFIC Road traffic is any movement of a road vehicle on a given road network. When a road vehicle is being carried on another vehicle, only the movement of the carrying (active mode) is considered. [COVERAGE] ROAD TRAFFIC IRTAD - Data refer to road motor vehicle traffic of motorised two-wheelers, passenger cars, goods road motor vehicles and buses. [STAT_CONC_DEF] ROAD TRAFFIC IRTAD - Data are calculated using automatic and manual roadside traffic counts.
In 2023, the number of deaths caused by traffic accidents amounted to approximately 11,628 cases in Vietnam. This indicated a decrease from the previous year. From 2013 to 2021, the number of traffic deaths has gradually declined, then increased dramatically in 2022, with the number of deaths due to crashes double than that in 2021.
This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2).
Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death.
SOURCES
CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics. ICD–10: External cause of injury mortality matrix.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.
In 2023, China recorded 60,028 fatalities in traffic accidents across the country. The number of fatalities has increased from 60,676in the previous year. Road traffic in China The number of road traffic fatalities in China varies greatly from region to region. Guangdong and Hubei had been the provinces with the highest number of traffic fatalities. All located in the eastern coastal area of China, they had also been the regions with the most traffic accidents in 2023. On the contrary, only a small number of fatalities had been reported in central and western regions of China. Reasons for this imbalance may be found in less traffic volume as well as the existence of fewer urban congested areas.Since 2016, the number of casualties and fatalities from traffic accidents in China has increased significantly, reaching 25,3895 injuries and 60,028 deaths in 2023. Nevertheless, traffic accidents have emerged as one of the leading causes of death in China. The primary reasons may be unregulated road works and a lack of awareness among Chinese drivers. The development of neither road infrastructure nor driving behavior in China had been able to keep up with the increasing number of traffic participants and registered cars. As of 2003, only 24 million vehicles had been registered in China, whereas by 2019 that number had skyrocketed to 253.76 million cars. In 2023 alone, the number of newly registered vehicles in China had amounted to around 24.5 million cars.
The program collects data for analysis of traffic safety crashes to identify problems, and evaluate countermeasures leading to reducing injuries and property damage resulting from motor vehicle crashes. The FARS dataset contains descriptions, in standard format, of each fatal crash reported. To qualify for inclusion, a crash must involve a motor vehicle traveling a traffic-way customarily open to the public and resulting in the death of a person (occupant of a vehicle or a non-motorist) within 30 days of the crash. Each crash has more than 100 coded data elements that characterize the crash, the vehicles, and the people involved. The specific data elements may be changed slightly each year to conform to the changing user needs, vehicle characteristics and highway safety emphasis areas. The type of information that FARS, a major application, processes is therefore motor vehicle crash data.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Home Office also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
The Home Office has responsibility for fire services in England. The vast majority of data tables produced by the Home Office are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and http://www.nifrs.org/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/6787aa6c2cca34bdaf58a257/fire-statistics-data-tables-fire0101-230125.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 94 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/6787ace93f1182a1e258a25c/fire-statistics-data-tables-fire0102-230125.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.51 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/6787b036868b2b1923b64648/fire-statistics-data-tables-fire0103-230125.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 123 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/6787b3ac868b2b1923b6464d/fire-statistics-data-tables-fire0104-230125.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 295 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/6787b4323f1182a1e258a26a/fire-statistics-data-tables-fire0201-230125.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 111 KB) <a href="https://www.gov.uk/government/statistical-data-sets/fire0201-previous-data-t
The Fataility Analysis Reporting System (FARS) dataset is as of July 1, 2017, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). One of the primary objectives of the National Highway Traffic Safety Administration (NHTSA) is to reduce the staggering human toll and property damage that motor vehicle traffic crashes impose on our society. FARS is a census of fatal motor vehicle crashes with a set of data files documenting all qualifying fatalities that occurred within the 50 States, the District of Columbia, and Puerto Rico since 1975. To qualify as a FARS case, the crash had to involve a motor vehicle traveling on a trafficway customarily open to the public, and must have resulted in the death of a motorist or a non-motorist within 30 days of the crash. This data file contains information about crash characteristics and environmental conditions at the time of the crash. There is one record per crash. Please note: 207 records in this database were geocoded to latitude and logtitude of 0,0 due to lack of location information or errors in the reported locations. FARS data are made available to the public in Statistical Analysis System (SAS) data files as well as Database Files (DBF). Over the years changes have been made to the type of data collected and the way the data are presented in the SAS data files. Some data elements have been dropped and new ones added, coding of individual data elements has changed, and new SAS data files have been created. Coding changes and the years for which individual data items are available are shown in the “Data Element Definitions and Codes” section of this document. The FARS Coding and Editing Manual contains a detailed description of each SAS data elements including coding instructions and attribute definitions. The Coding Manual is published for each year of data collection. Years 2001 to current are available at: http://www-nrd.nhtsa.dot.gov/Cats/listpublications.aspx?Id=J&ShowBy=DocType Note: In this manual the word vehicle means in-transport motor vehicle unless otherwise noted.
Deaths or serious injuries among emergency medical technicians (EMTs) and other ambulance occupants occur at a high rate during transport. According to a study by the National Institute for Occupational Safety and Health (NIOSH), EMTs and paramedics have higher fatality rates when compared to all workers, with forty-five percent of EMT deaths resulting from highway incidents, primarily due to vehicle collisions.1 Data from the National Highway and Traffic Safety Administration showed that among the persons killed in crashes involving an ambulance between 1992 and 2011, twenty one percent were EMTs and patients, while four percent were ambulance drivers.2 To reduce injury potential to the EMTs and other ambulance occupants, NIOSH, the Department of Homeland Security, the U.S. General Services Administration, and the National Institute of Standards and Technology, along with private industry partners, have committed to improving the workspace design of ambulance patient compartments for safe and effective perfo
This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
This collection focuses on how changes in the legal drinking age affect the number of fatal motor vehicle accidents and crime rates. The principal investigators identified three areas of study. First, they looked at blood alcohol content of drivers involved in fatal accidents in relation to changes in the drinking age. Second, they looked at how arrest rates correlated with changes in the drinking age. Finally, they looked at the relationship between blood alcohol content and arrest rates. In this context, the investigators used the percentage of drivers killed in fatal automobile accidents who had positive blood alcohol content as an indicator of drinking in the population. Arrests were used as a measure of crime, and arrest rates per capita were used to create comparability across states and over time. Arrests for certain crimes as a proportion of all arrests were used for other analyses to compensate for trends that affect the probability of arrests in general. This collection contains three parts. Variables in the Federal Bureau of Investigation Crime Data file (Part 1) include the state and year to which the data apply, the type of crime, and the sex and age category of those arrested for crimes. A single arrest is the unit of analysis for this file. Information in the Population Data file (Part 2) includes population counts for the number of individuals within each of seven age categories, as well as the number in the total population. There is also a figure for the number of individuals covered by the reporting police agencies from which data were gathered. The individual is the unit of analysis. The Fatal Accident Data file (Part 3) includes six variables: the FIPS code for the state, year of accident, and the sex, age group, and blood alcohol content of the individual killed. The final variable in each record is a count of the number of drivers killed in fatal motor vehicle accidents for that state and year who fit into the given sex, age, and blood alcohol content grouping. A driver killed in a fatal accident is the unit of analysis.
The Not-in-Traffic Surveillance (NiTS) system is a virtual data collection system designed to provide counts and details regarding fatalities and injuries that occur in non-traffic crashes and in non-crash incidents. NiTS non-traffic crash data is obtained through NHTSA's National Automotive Sampling System, General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). NiTS non-crash injury data is based upon emergency department records from a special study conducted by the Consumer Product Safety Commission's National Electronic Injury Surveillance System (NEISS) All Injury Program. NiTS non-crash fatality data is derived from death certificate information from the Centers for Disease Control's National Vital Statistics System.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.