Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
New York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.
This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.
I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.
This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.
I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.
This dataset contains the following files for California influenza surveillance data: 1) Outpatient Influenza-like Illness Surveillance Data by Region and Influenza Season from volunteer sentinel providers; 2) Clinical Sentinel Laboratory Influenza and Other Respiratory Virus Surveillance Data by Region and Influenza Season from volunteer sentinel laboratories; and 3) Public Health Laboratory Influenza Respiratory Virus Surveillance Data by Region and Influenza Season from California public health laboratories. The Immunization Branch at the California Department of Public Health (CDPH) collects, compiles and analyzes information on influenza activity year-round in California and produces a weekly influenza surveillance report during October through May. The California influenza surveillance system is a collaborative effort between CDPH and its many partners at local health departments, public health and clinical laboratories, vital statistics offices, healthcare providers, clinics, emergency departments, and the Centers for Disease Control and Prevention (CDC). California data are also included in the CDC weekly influenza surveillance report, FluView, and help contribute to the national picture of Influenza activity in the United States. The information collected allows CDPH and CDC to: 1) find out when and where influenza activity is occurring; 2) track influenza-related illness; 3) determine what influenza viruses are circulating; 4) detect changes in influenza viruses; and 5) measure the impact influenza is having on hospitalizations and deaths.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This Dataset contains State and Year-wise total number of seasonal influenza (H1N1 Virus) cases and deaths.
Note: 1) Data for 2025 is as of 31 January. 2) Telangana State has reporting data separately since Nov, 2014 after separation from Andhra Pradesh.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).
Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.
Data are updated each Friday around 2 pm.
For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.
COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.
The report is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.
Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.
Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).
CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.
Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
This file contains the complete set of data reported to 122 Cities Mortality Reposting System. The system was retired as of 10/6/2016. While the system was running each week, the vital statistics offices of 122 cities across the United States reported the total number of death certificates processed and the number of those for which pneumonia or influenza was listed as the underlying or contributing cause of death by age group (Under 28 days, 28 days - 1 year, 1-14 years, 15-24 years, 25-44 years, 45-64 years, 65-74 years, 75-84 years, and - 85 years). U:Unavailable. - : No reported cases.* Mortality data in this table were voluntarily reported from 122 cities in the United States, most of which have populations of >100,000. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included. Total includes unknown ages. More information on Flu Activity & Surveillance is available at http://www.cdc.gov/flu/weekly/fluactivitysurv.htm.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
The Chicago Department of Public Health (CDPH) receives weekly deidentified provisional death certificate data for all deaths that occur in Chicago, which can include both Chicago and non-Chicago residents from the Illinois Department of Public Health (IDPH) Illinois Vital Records System (IVRS). CDPH scans for keywords to identify deaths with COVID-19, influenza, or respiratory syncytial virus (RSV) listed as an immediate cause of death, contributing factor, or other significant condition. The percentage of all reported deaths that are attributed to COVID-19, influenza, or RSV is calculated as the number of deaths for each respective disease divided by the number of deaths from all causes, multiplied by 100.
This dataset reflects death certificates that have been submitted to IVRS at the time of transmission to CDPH each week – data from previous weeks are not updated with any new submissions to IVRS. As such, estimates in this dataset may differ from those reported through other sources. This dataset can be used to understand trends in COVID-19, influenza, and RSV mortality in Chicago but does not reflect official death statistics.
Source: Provisional deaths from the Illinois Department of Public Health Illinois Vital Records System.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WHO: Influenza A (H1N1): Number of Deaths: India data was reported at 0.000 Person in 06 Jul 2009. This stayed constant from the previous number of 0.000 Person for 05 Jul 2009. WHO: Influenza A (H1N1): Number of Deaths: India data is updated daily, averaging 0.000 Person from Apr 2009 (Median) to 06 Jul 2009, with 74 observations. The data reached an all-time high of 0.000 Person in 06 Jul 2009 and a record low of 0.000 Person in 06 Jul 2009. WHO: Influenza A (H1N1): Number of Deaths: India data remains active status in CEIC and is reported by World Health Organization. The data is categorized under High Frequency Database’s Disease Outbreaks – Table WHO.D002: World Heath Organization: Influenza A (H1N1): By Countries.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.
References
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 95% confidence intervals for the influenza-attributed deaths by age category are given in brackets behind the point estimates. In the last two columns on the right-side of the table for each year in the study period the total number of influenza-attributed deaths is given as well as the total years-of-life-lost attributed to influenza.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Groundwater samples were collected in an observational study design by dead-end ultrafiltration from private wells on 40 Iowa swine farms and analyzed by quantitative polymerase chain reaction (qPCR) to assess contamination by endemic swine pathogens and swine manure markers. These data facilitate investigation of groundwater as a biosecurity risk on swine farms. Each farm was sampled one time. Twenty farms were sampled in spring of 2024 (4/15/2024 – 5/29/2024) and twenty farms were sampled in fall of 2024 (9/16/2024 – 10/29/2024). Sample volumes were 639–853 L (mean = 759). Control samples were collected in the field for each field sample, and control samples were tested for all organisms if the corresponding field sample tested positive for any organism. Samples were shipped on ice to the laboratory where they were backflushed, underwent secondary concentration, and archived at -80 degrees Celsius. Secondary concentrates were subsampled for nucleic acid extraction using the QIAGEN QIAcube Connect system, and each nucleic acid extract was analyzed in duplicate by qPCR using a Roche LightCycler 480 II for the following microorganisms: Cryptosporidium spp., enteropathogenic Escherichia coli, porcine circovirus type 2, porcine epidemic diarrhea virus, porcine reproductive and respiratory syndrome virus, rotavirus group C, Salmonella spp., swine Bacteroidales (2 qPCR assays), and swine influenza virus. Negative and positive controls were included at lab steps for concentration, nucleic acid extraction, reverse transcription, and qPCR. PCR inhibition was assessed in each nucleic acid extract and mitigated by dilution if necessary. Data are expressed as genomic copies per liter of groundwater sampled unless otherwise indicated. Dataset consists of 1 spreadsheet file: Dataset 01102025_V4.csv. Variables in this file are described in the included data dictionary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The present study aimed to evaluate the association between influenza vaccination and the secondary prevention of cardiovascular disease (CVD) among elderly persons. This retrospective cohort study used the Geriatric Dataset of Taiwan’s National Health Insurance Research Database (2000–2013). Patients aged ≥ 65 years who had been hospitalized for the first episodes of myocardial infarction were eligible. The vaccinated cohort comprised patients who received one dose of influenza vaccine within 180 days after discharge. The unvaccinated cohort included those who did not receive influenza vaccination and was propensity score–matched (1:1) for known CVD risk factors. All-cause death, acute myocardial infarction or cardiovascular death, and hospitalization for heart failure were assessed 1 year after the 181st day after hospital discharge. Compared with the matched cohort (n = 4,350), the vaccinated cohort (n = 4,350) had significantly lower incidences of all-cause death (hazard ratios [HR] 0.82, 95% CI [confidence interval] 0.73–0.92), myocardial infarction or cardiovascular death (HR 0.84, 95% CI 0.74–0.96), and hospitalization for heart failure (HR 0.83, 95% CI 0.74–0.92). The association between influenza vaccination and reduction of CVDs was similar across different subgroups. Cumulative incidence curves of the CVDs of interest for the two cohorts separated within the initial 3 months of follow-up (P < 0.05). Influenza vaccination was associated with a reduced risk of CVD in the elderly population with previous myocardial infarction.
Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report. The report is updated each Friday. Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis. Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday. Hospitalization data: Data on COVID-19 and influenza hospital admissions will be included after the National Healthcare Safety Network (NHSN) Hospitalization Data reporting requirement goes into effect on November 1, 2024. Data will not be available immediately after November 1, 2024, to account for data preparation and quality checks. CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians. Weekly hospitalization data are defined as Sunday through Saturday. Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday. Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.