100+ datasets found
  1. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  2. News Popularity in Multiple Social Media Platforms

    • kaggle.com
    zip
    Updated Oct 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikhil John (2020). News Popularity in Multiple Social Media Platforms [Dataset]. https://www.kaggle.com/nikhiljohnk/news-popularity-in-multiple-social-media-platforms
    Explore at:
    zip(10881978 bytes)Available download formats
    Dataset updated
    Oct 28, 2020
    Authors
    Nikhil John
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Social Media has been taking up everything on the Internet. People getting the latest news, useful resources, life partner and what not. In a world where Social media plays a big role in giving news, we must also know that news which affects our sentiments are going to get spread like a wildfire. Based on the Headline and the title, and according to the date given and the Social media platforms, you have to predict how it has affected the human sentiment scores. You have to predict the column “SentimentTitle” and “SentimentHeadline”.

    Content

    This is a subset of the dataset of the same name available in the UCI Machine Learning Repository The collected data relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine.

    Dataset Information

    The attributes for each of the dataset are : - IDLink (numeric): Unique identifier of news items - Title (string): Title of the news item according to the official media sources - Headline (string): Headline of the news item according to the official media sources - Source (string): Original news outlet that published the news item - Topic (string): Query topic used to obtain the items in the official media sources - Publish-Date (timestamp): Date and time of the news items' publication - Facebook (numeric): Final value of the news items' popularity according to the social media source Facebook - Google-Plus (numeric): Final value of the news items' popularity according to the social media source Google+ - LinkedIn (numeric): Final value of the news items' popularity according to the social media source LinkedIn - SentimentTitle: Sentiment score of the title, Higher the score, better is the impact or +ve sentiment and vice-versa. (Target Variable 1) - SentimentHeadline: Sentiment score of the text in the news items' headline. Higher the score, better is the impact or +ve sentiment. (Target Variable 2)

  3. Facebook users worldwide 2017-2027

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  4. SENTIMENT ANALYSIS OF SOCIAL MEDIA PLATFORMS

    • kaggle.com
    Updated Sep 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jigyashu Singh Lodhi (2023). SENTIMENT ANALYSIS OF SOCIAL MEDIA PLATFORMS [Dataset]. http://doi.org/10.34740/kaggle/dsv/6473513
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 14, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jigyashu Singh Lodhi
    Description

    Dataset

    This dataset was created by Jigyashu Singh Lodhi

    Released under Other (specified in description)

    Contents

  5. Leading social media platforms used by marketers worldwide 2024

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Ross, Leading social media platforms used by marketers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Christopher Ross
    Description

    During a 2024 survey among marketers worldwide, around 86 percent reported using Facebook for marketing purposes. Instagram and LinkedIn followed, respectively mentioned by 79 and 65 percent of the respondents.

                  The global social media marketing segment
    
                  According to the same study, 59 percent of responding marketers intended to increase their organic use of YouTube for marketing purposes throughout that year. LinkedIn and Instagram followed with similar shares, rounding up the top three social media platforms attracting a planned growth in organic use among global marketers in 2024. Their main driver is increasing brand exposure and traffic, which led the ranking of benefits of social media marketing worldwide.
    
                  Social media for B2B marketing
    
                  Social media platform adoption rates among business-to-consumer (B2C) and business-to-business (B2B) marketers vary according to each subsegment's focus. While B2C professionals prioritize Facebook and Instagram – both run by Meta, Inc. – due to their popularity among online audiences, B2B marketers concentrate their endeavors on Microsoft-owned LinkedIn due to its goal to connect people and companies in a corporate context.
    
  6. Data from: social media engagement

    • kaggle.com
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Divya Raj Singh Shekhawat (2025). social media engagement [Dataset]. https://www.kaggle.com/datasets/divyaraj2006/social-media-engagement
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Kaggle
    Authors
    Divya Raj Singh Shekhawat
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    About Dataset This dataset captures the pulse of viral social media trends across Facebook, Instagram and Twitter. It provides insights into the most popular hashtags, content types, and user engagement levels, offering a comprehensive view of how trends unfold across platforms. With regional data and influencer-driven content, this dataset is perfect for:

    Trend analysis 🔍 Sentiment modeling 💭 Understanding influencer marketing 📈 Dive in to explore what makes content go viral, the behaviors that drive engagement, and how trends evolve on a global scale! 🌍

  7. Social Media Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Social Media Datasets [Dataset]. https://brightdata.com/products/datasets/social-media
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.

    Dataset Features

    User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.

    Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.

    Popular Use Cases

    Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.

    Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.

  8. Social Media Usage Dataset(Applications)

    • kaggle.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhadra Mohit (2024). Social Media Usage Dataset(Applications) [Dataset]. https://www.kaggle.com/datasets/bhadramohit/social-media-usage-datasetapplications/suggestions?status=pending&yourSuggestions=true
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhadra Mohit
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    Context: This dataset offers insights into the usage patterns of social media apps for 1,000 users across seven popular platforms: Facebook, Instagram, Twitter, Snapchat, TikTok, LinkedIn, and Pinterest. It tracks various metrics such as daily time spent on the app, number of posts made, likes received, and new followers gained.

    Dataset Features:

    User_ID: Unique identifier for each user. App: The social media platform being used. Daily_Minutes_Spent: Total time a user spends on the app each day, ranging from 5 to 500 minutes. Posts_Per_Day: Number of posts a user creates per day, ranging from 0 to 20. Likes_Per_Day: Total number of likes a user receives on their posts each day, ranging from 0 to 200. Follows_Per_Day: The number of new followers a user gains daily, ranging from 0 to 50. Context & Use Cases: This dataset could be particularly useful for social media analysts, digital marketers, or researchers interested in understanding user engagement trends across different platforms. It provides insights into how much time users spend, how actively they post, and the level of engagement they receive (in terms of likes and followers).

    Conclusion & Outcome: Analyzing this dataset could yield several outcomes:

    Engagement Patterns: Identifying which platforms have higher engagement in terms of time spent or likes received. Active Users: Determining which users are the most active across various platforms based on the number of posts and followers gained. User Retention: Studying the correlation between time spent and follower growth, providing insight into user retention strategies for different platforms. Overall, the dataset allows for exploration of social media usage trends and helps drive decision-making for marketing strategies, content creation, and platform engagement.

  9. s

    What Are The Most Used Social Media Platforms?

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). What Are The Most Used Social Media Platforms? [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook and YouTube are still the most used social media platforms today.

  10. Countries with the most Facebook users 2024

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Countries with the most Facebook users 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users?

                  There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
    
                  Facebook – the most used social media
    
                  Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
    
                  Facebook usage by device
                  As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
    
  11. Data from: Social Media Engagement Dataset

    • kaggle.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subash Shanmugam (2025). Social Media Engagement Dataset [Dataset]. https://www.kaggle.com/datasets/subashmaster0411/social-media-engagement-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Subash Shanmugam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This machine-generated dataset simulates social media engagement data across various metrics, including likes, shares, comments, impressions, sentiment scores, toxicity, and engagement growth. It is designed for analysis and visualization of trends, buzz frequency, public sentiment, and user behavior on digital platforms.

    The dataset can be used to:

    Identify spikes or drops in engagement

    Analyze changes in sentiment over time

    Build dashboards for digital trend tracking

    Test algorithms for sentiment analysis or trend prediction

  12. MultiSocial

    • zenodo.org
    • data.niaid.nih.gov
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dominik Macko; Dominik Macko; Jakub Kopal; Robert Moro; Robert Moro; Ivan Srba; Ivan Srba; Jakub Kopal (2025). MultiSocial [Dataset]. http://doi.org/10.5281/zenodo.13846152
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dominik Macko; Dominik Macko; Jakub Kopal; Robert Moro; Robert Moro; Ivan Srba; Ivan Srba; Jakub Kopal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MultiSocial is a dataset (described in a paper) for multilingual (22 languages) machine-generated text detection benchmark in social-media domain (5 platforms). It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual large language models by using 3 iterations of paraphrasing. The dataset has been anonymized to minimize amount of sensitive data by hiding email addresses, usernames, and phone numbers.

    If you use this dataset in any publication, project, tool or in any other form, please, cite the paper.

    Disclaimer

    Due to data source (described below), the dataset may contain harmful, disinformation, or offensive content. Based on a multilingual toxicity detector, about 8% of the text samples are probably toxic (from 5% in WhatsApp to 10% in Twitter). Although we have used data sources of older date (lower probability to include machine-generated texts), the labeling (of human-written text) might not be 100% accurate. The anonymization procedure might not successfully hiden all the sensitive/personal content; thus, use the data cautiously (if feeling affected by such content, report the found issues in this regard to dpo[at]kinit.sk). The intended use if for non-commercial research purpose only.

    Data Source

    The human-written part consists of a pseudo-randomly selected subset of social media posts from 6 publicly available datasets:

    1. Telegram data originated in Pushshift Telegram, containing 317M messages (Baumgartner et al., 2020). It contains messages from 27k+ channels. The collection started with a set of right-wing extremist and cryptocurrency channels (about 300 in total) and was expanded based on occurrence of forwarded messages from other channels. In the end, it thus contains a wide variety of topics and societal movements reflecting the data collection time.

    2. Twitter data originated in CLEF2022-CheckThat! Task 1, containing 34k tweets on COVID-19 and politics (Nakov et al., 2022, combined with Sentiment140, containing 1.6M tweets on various topics (Go et al., 2009).

    3. Gab data originated in the dataset containing 22M posts from Gab social network. The authors of the dataset (Zannettou et al., 2018) found out that “Gab is predominantly used for the dissemination and discussion of news and world events, and that it attracts alt-right users, conspiracy theorists, and other trolls.” They also found out that hate speech is much more prevalent there compared to Twitter, but lower than 4chan's Politically Incorrect board.

    4. Discord data originated in Discord-Data, containing 51M messages. This is a long-context, anonymized, clean, multi-turn and single-turn conversational dataset based on Discord data scraped from a large variety of servers, big and small. According to the dataset authors, it contains around 0.1% of potentially toxic comments (based on the applied heuristic/classifier).

    5. WhatsApp data originated in whatsapp-public-groups, containing 300k messages (Garimella & Tyson, 2018). The public dataset contains the anonymised data, collected for around 5 months from around 178 groups. Original messages were made available to us on request to dataset authors for research purposes.

    From these datasets, we have pseudo-randomly sampled up to 1300 texts (up to 300 for test split and the remaining up to 1000 for train split if available) for each of the selected 22 languages (using a combination of automated approaches to detect the language) and platform. This process resulted in 61,592 human-written texts, which were further filtered out based on occurrence of some characters or their length, resulting in about 58k human-written texts.

    The machine-generated part contains texts generated by 7 LLMs (Aya-101, Gemini-1.0-pro, GPT-3.5-Turbo-0125, Mistral-7B-Instruct-v0.2, opt-iml-max-30b, v5-Eagle-7B-HF, vicuna-13b). All these models were self-hosted except for GPT and Gemini, where we used the publicly available APIs. We generated the texts using 3 paraphrases of the original human-written data and then preprocessed the generated texts (filtered out cases when the generation obviously failed).

    The dataset has the following fields:

    • 'text' - a text sample,

    • 'label' - 0 for human-written text, 1 for machine-generated text,

    • 'multi_label' - a string representing a large language model that generated the text or the string "human" representing a human-written text,

    • 'split' - a string identifying train or test split of the dataset for the purpose of training and evaluation respectively,

    • 'language' - the ISO 639-1 language code identifying the detected language of the given text,

    • 'length' - word count of the given text,

    • 'source' - a string identifying the source dataset / platform of the given text,

    • 'potential_noise' - 0 for text without identified noise, 1 for text with potential noise.

    ToDo Statistics (under construction)

  13. s

    Social Media Usage By Country

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results might surprise you when looking at internet users that are active on social media in each country.

  14. Planned changes in use of selected social media for organic marketing...

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Ross, Planned changes in use of selected social media for organic marketing worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Christopher Ross
    Description

    During a January 2024 global survey among marketers, nearly 60 percent reported plans to increase their organic use of YouTube for marketing purposes in the following 12 months. LinkedIn and Instagram followed, respectively mentioned by 57 and 56 percent of the respondents intending to use them more. According to the same survey, Facebook was the most important social media platform for marketers worldwide.

  15. B

    Data from: The State of Social Media in Canada 2022

    • borealisdata.ca
    • dataone.org
    Updated Sep 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philip Mai; Anatoliy Gruzd (2022). The State of Social Media in Canada 2022 [Dataset]. http://doi.org/10.5683/SP3/BDFE7S
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 14, 2022
    Dataset provided by
    Borealis
    Authors
    Philip Mai; Anatoliy Gruzd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Canada
    Description

    The report provides a snapshot of the social media usage trends amongst online Canadian adults based on an online survey of 1500 participants. Canada continues to be one of the most connected countries in the world. An overwhelming majority of online Canadian adults (94%) have an account on at least one social media platform. However, the 2022 survey results show that the COVID-19 pandemic has ushered in some changes in how and where Canadians are spending their time on social media. Dominant platforms such as Facebook, messaging apps and YouTube are still on top but are losing ground to newer platforms such as TikTok and more niche platforms such as Reddit and Twitch.

  16. Impact of Digital Habits on Mental Health

    • kaggle.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahzad Aslam (2025). Impact of Digital Habits on Mental Health [Dataset]. https://www.kaggle.com/datasets/zeesolver/mental-health
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Kaggle
    Authors
    Shahzad Aslam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset explores the relationship between digital behavior and mental well-being among 100,000 individuals. It records how much time people spend on screens, use of social media (including TikTok), and how these habits may influence their sleep, stress, and mood levels.

    It includes six numerical features, all clean and ready for analysis, making it ideal for machine learning tasks like regression or classification. The data enables researchers and analysts to investigate how modern digital lifestyles may impact mental health indicators in measurable ways.

    Dataset Applications

    • Quantify how screen‑time, TikTok use, or multi‑platform engagement statistically relate to stress, sleep loss, and mood.
    • Train regression or classification models that forecast stress level or mood score from real‑time digital‑usage metrics.
    • Feed user‑specific data into recommender systems that suggest screen‑time caps or bedtime routines to improve mental health.
    • Provide evidence for guidelines on youth screen‑time limits and platform moderation based on observed stress‑sleep trade‑offs.
    • Serve as a teaching dataset for EDA, feature engineering, and model evaluation in data‑science or psychology curricula.
    • Evaluate app interventions (e.g., screen‑time nudges) by comparing predicted versus actual post‑intervention stress or mood shifts.
    • Cluster individuals into digital‑behavior personas (e.g., “heavy late‑night scrollers”) to tailor mental‑health resources.
    • Generate synthetic time‑series scenarios (what‑if reductions in TikTok hours) to estimate downstream impacts on sleep and stress.
    • Use engineered features (ratio of TikTok hours to total screen‑time, etc.) in broader wellbeing models that include diet or exercise data.
    • Assess whether mental‑health prediction models remain accurate and unbiased across different screen‑time or platform‑use segments. # Column Descriptions
    • screen_time_hours – Daily total screen usage in hours across all devices.
    • social_media_platforms_used – Number of different social media platforms used per day.
    • hours_on_TikTok – Time spent on TikTok daily, in hours.
    • sleep_hours – Average number of sleep hours per night.
    • stress_level – Stress intensity reported on a scale from 1 (low) to 10 (high).
    • mood_score – Self-rated mood on a scale from 2 (poor) to 10 (excell # Inspiration This dataset was inspired by growing concerns about how screen time and social media affect mental health. It enables analysis of the links between digital habits, stress, sleep, and mood—encouraging data-driven solutions for healthier online behavior and emotional well-being. # Ethically Mined Data: This dataset has been ethically mined and synthetically generated without collecting any personally identifiable information. All values are artificial but statistically realistic, allowing safe use in academic, research, and public health projects while fully respecting user privacy and data ethics.
  17. m

    Data from: A Dataset on 'Social media and India’s Foreign Policy: The Case...

    • data.mendeley.com
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukund Narvenkar (2024). A Dataset on 'Social media and India’s Foreign Policy: The Case Study of ‘X’ Diplomacy during the Covid-19 Pandemic' [Dataset]. http://doi.org/10.17632/xfr9y9ggkm.3
    Explore at:
    Dataset updated
    Dec 19, 2024
    Authors
    Mukund Narvenkar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Social media platforms have become integral tools in the conduct of foreign policy for many nations, including India. This dataset serves as a resource for analyzing ‘Social Media and India’s Foreign Policy: The Case Study of ‘X’ Diplomacy during the Covid-19 Pandemic.’ The data were collected through a web-based questionnaire distributed primarily to people aged 18 – 61 and above in India. A total of 171 valid data were collected from 17 states offering extensive geographic coverage and stored in Mendeley. The 15 contributor states are Goa, Maharashtra, Tamil Nadu, Gujarat, Delhi, Assam, Haryana, Jammu and Kashmir, Karnataka, Kerala, Punjab, Rajasthan, Tripura, Uttar Pradesh and West Bengal. It encompasses diverse question formats, including single-choice, multiple-choice, quizzes, and open-ended. The study underscores the opportunities and challenges of employing 'X' diplomacy in India's foreign policy. Thus, there were two hypotheses. First, India's effective use of 'X' diplomacy positively impacts public perception of India's foreign policy effectiveness. Second, India's adept use of 'X' diplomacy during the COVID-19 pandemic enhances its ability to manage and respond to the crisis effectively. This data shows public perception of the effective use of social media by the Government of India, particularly in the crisis situation. Data also highlight the significant change in India’s narrative through its ‘X’ diplomacy, effectively setting the narratives, public perceptions, and diplomatic strategies. This data can be fully utilized in the study of the significance of social media in India’s foreign policy, the role of social media like ‘X’ in the making of India’s foreign policy, how effective social media like ‘X’ was during the Covid-19 pandemic and how Indian government utilized social media like ‘X’ to delivered messages and to set the narrative in the international politics.

  18. o

    Social Media Profile Links by Name

    • openwebninja.com
    json
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2025). Social Media Profile Links by Name [Dataset]. https://www.openwebninja.com/api/social-links-search
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Worldwide
    Description

    This dataset provides comprehensive social media profile links discovered through real-time web search. It includes profiles from major social networks like Facebook, TikTok, Instagram, Twitter, LinkedIn, Youtube, Pinterest, Github and more. The data is gathered through intelligent search algorithms and pattern matching. Users can leverage this dataset for social media research, influencer discovery, social presence analysis, and social media marketing. The API enables efficient discovery of social profiles across multiple platforms. The dataset is delivered in a JSON format via REST API.

  19. Social Media vs Productivity

    • kaggle.com
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdi Mashayekhi (2025). Social Media vs Productivity [Dataset]. https://www.kaggle.com/datasets/mahdimashayekhi/social-media-vs-productivity/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2025
    Dataset provided by
    Kaggle
    Authors
    Mahdi Mashayekhi
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    📊 Social Media vs Productivity — Realistic Behavioral Dataset (30,000 Users)

    This dataset explores how daily digital habits — including social media usage, screen time, and notification exposure — relate to individual productivity, stress, and well-being.

    🔍 What’s Inside?

    The dataset contains 30,000 real-world-style records simulating behavioral patterns of people with various jobs, social habits, and lifestyle choices. The goal is to understand how different digital behaviors correlate with perceived and actual productivity.

    🧠 Why This Dataset is Valuable

    • Designed for real-world ML workflows
      Includes missing values, noise, and outliers — ideal for practicing data cleaning and preprocessing.

    • 🔗 High correlation between target features
      The perceived_productivity_score and actual_productivity_score are strongly correlated, making this dataset suitable for experiments in feature selection and multicollinearity.

    • 🛠️ Feature Engineering playground
      Use this dataset to practice feature scaling, encoding, binning, interaction terms, and more.

    • 🧪 Perfect for EDA, regression & classification
      You can model productivity, stress, or satisfaction based on behavior patterns and digital exposure.

    🧾 Columns & Feature Info

    Column NameDescription
    ageAge of the individual (18–65 years)
    genderGender identity: Male, Female, or Other
    job_typeEmployment sector or status (IT, Education, Student, etc.)
    daily_social_media_timeAverage daily time spent on social media (hours)
    social_platform_preferenceMost-used social platform (Instagram, TikTok, Telegram, etc.)
    number_of_notificationsNumber of mobile/social notifications per day
    work_hours_per_dayAverage hours worked each day
    perceived_productivity_scoreSelf-rated productivity score (scale: 0–10)
    actual_productivity_scoreSimulated ground-truth productivity score (scale: 0–10)
    stress_levelCurrent stress level (scale: 1–10)
    sleep_hoursAverage hours of sleep per night
    screen_time_before_sleepTime spent on screens before sleeping (hours)
    breaks_during_workNumber of breaks taken during work hours
    uses_focus_appsWhether the user uses digital focus apps (True/False)
    has_digital_wellbeing_enabledWhether Digital Wellbeing is activated (True/False)
    coffee_consumption_per_dayNumber of coffee cups consumed per day
    days_feeling_burnout_per_monthNumber of burnout days reported per month
    weekly_offline_hoursTotal hours spent offline each week (excluding sleep)
    job_satisfaction_scoreSatisfaction with job/life responsibilities (scale: 0–10)

    📌 Notes

    • Contains NaN values in critical columns (productivity, sleep, stress) for data imputation tasks
    • Includes outliers in media usage, coffee intake, and notification count
    • Target columns are strongly correlated for multicollinearity testing
    • Multi-purpose: regression, classification, clustering, visualization

    💡 Use Cases

    • Exploratory Data Analysis (EDA)
    • Feature engineering pipelines
    • Machine learning model benchmarking
    • Statistical hypothesis testing
    • Burnout and mental health prediction projects

    📥 Bonus

    👉 Sample notebook coming soon with data cleaning, visualization, and productivity prediction!

  20. u

    Analysis of social media and organizational learning

    • researchdata.up.ac.za
    pdf
    Updated Feb 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry Moongela; Marie Hattingh (2023). Analysis of social media and organizational learning [Dataset]. http://doi.org/10.25403/UPresearchdata.21952859.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 4, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Harry Moongela; Marie Hattingh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These datasets consist of qualitative data collected through semi-structured in-depth interviews as well as a focus group from three different companies with seven industry experts.The data collected was to address the use of social media to enhance organisational learning and also to address the gap that exists in terms of the integration of organisational learning (OL) and social media and also address the lack of guidelines for organisations that would like to implement the use of social media to facilitate OL. The data were triangulated by comparing the results from the three companies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
Organization logo

Number of global social network users 2017-2028

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
Stacy Jo Dixon
Description

How many people use social media?

              Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.

              Who uses social media?
              Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
              when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.

              How much time do people spend on social media?
              Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.

              What are the most popular social media platforms?
              Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Search
Clear search
Close search
Google apps
Main menu