This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...
Data Source: CA Secretary of State
This data biography shares the how, who, what, where, when, and why about this dataset. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org.
Data dashboard featuring this data: Demographics https://data.countyofnapa.org/stories/s/bu3n-fytj
How was the data collected? The California Secretary of State's Elections Division is responsible for maintaining a database of all registered voters as well as coordinating the counting of votes after elections. Voter participation is defined here as the percentage of eligible voters who actually voted.
Who was included and excluded from the data? The term "eligible voters" refers to the population of US citizens aged 18 years or older who currently reside in the voting jurisdiction and who are not in prison or on parole for a felony and who have not been declared mentally incompetent.
Where was the data collected? Voter registration data and election results are collected throughout California. This subset of data includes Napa County and California.
How often is the data collected? Statewide General Elections are held the Tuesday after the first Monday in November on even years.
Where can I learn more about this data? https://www.sos.ca.gov/elections/prior-elections/statewide-election-results
AP VoteCast is a survey of the American electorate conducted by NORC at the University of Chicago for Fox News, NPR, PBS NewsHour, Univision News, USA Today Network, The Wall Street Journal and The Associated Press.
AP VoteCast combines interviews with a random sample of registered voters drawn from state voter files with self-identified registered voters selected using nonprobability approaches. In general elections, it also includes interviews with self-identified registered voters conducted using NORC’s probability-based AmeriSpeak® panel, which is designed to be representative of the U.S. population.
Interviews are conducted in English and Spanish. Respondents may receive a small monetary incentive for completing the survey. Participants selected as part of the random sample can be contacted by phone and mail and can take the survey by phone or online. Participants selected as part of the nonprobability sample complete the survey online.
In the 2020 general election, the survey of 133,103 interviews with registered voters was conducted between Oct. 26 and Nov. 3, concluding as polls closed on Election Day. AP VoteCast delivered data about the presidential election in all 50 states as well as all Senate and governors’ races in 2020.
This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!
Instead, use statistical software such as R or SPSS to weight the data.
National Survey
The national AP VoteCast survey of voters and nonvoters in 2020 is based on the results of the 50 state-based surveys and a nationally representative survey of 4,141 registered voters conducted between Nov. 1 and Nov. 3 on the probability-based AmeriSpeak panel. It included 41,776 probability interviews completed online and via telephone, and 87,186 nonprobability interviews completed online. The margin of sampling error is plus or minus 0.4 percentage points for voters and 0.9 percentage points for nonvoters.
State Surveys
In 20 states in 2020, AP VoteCast is based on roughly 1,000 probability-based interviews conducted online and by phone, and roughly 3,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.3 percentage points for voters and 5.5 percentage points for nonvoters.
In an additional 20 states, AP VoteCast is based on roughly 500 probability-based interviews conducted online and by phone, and roughly 2,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.9 percentage points for voters and 6.9 percentage points for nonvoters.
In the remaining 10 states, AP VoteCast is based on about 1,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 4.5 percentage points for voters and 11.0 percentage points for nonvoters.
Although there is no statistically agreed upon approach for calculating margins of error for nonprobability samples, these margins of error were estimated using a measure of uncertainty that incorporates the variability associated with the poll estimates, as well as the variability associated with the survey weights as a result of calibration. After calibration, the nonprobability sample yields approximately unbiased estimates.
As with all surveys, AP VoteCast is subject to multiple sources of error, including from sampling, question wording and order, and nonresponse.
Sampling Details
Probability-based Registered Voter Sample
In each of the 40 states in which AP VoteCast included a probability-based sample, NORC obtained a sample of registered voters from Catalist LLC’s registered voter database. This database includes demographic information, as well as addresses and phone numbers for registered voters, allowing potential respondents to be contacted via mail and telephone. The sample is stratified by state, partisanship, and a modeled likelihood to respond to the postcard based on factors such as age, race, gender, voting history, and census block group education. In addition, NORC attempted to match sampled records to a registered voter database maintained by L2, which provided additional phone numbers and demographic information.
Prior to dialing, all probability sample records were mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Postcards were addressed by name to the sampled registered voter if that individual was under age 35; postcards were addressed to “registered voter” in all other cases. Telephone interviews were conducted with the adult that answered the phone following confirmation of registered voter status in the state.
Nonprobability Sample
Nonprobability participants include panelists from Dynata or Lucid, including members of its third-party panels. In addition, some registered voters were selected from the voter file, matched to email addresses by V12, and recruited via an email invitation to the survey. Digital fingerprint software and panel-level ID validation is used to prevent respondents from completing the AP VoteCast survey multiple times.
AmeriSpeak Sample
During the initial recruitment phase of the AmeriSpeak panel, randomly selected U.S. households were sampled with a known, non-zero probability of selection from the NORC National Sample Frame and then contacted by mail, email, telephone and field interviewers (face-to-face). The panel provides sample coverage of approximately 97% of the U.S. household population. Those excluded from the sample include people with P.O. Box-only addresses, some addresses not listed in the U.S. Postal Service Delivery Sequence File and some newly constructed dwellings. Registered voter status was confirmed in field for all sampled panelists.
Weighting Details
AP VoteCast employs a four-step weighting approach that combines the probability sample with the nonprobability sample and refines estimates at a subregional level within each state. In a general election, the 50 state surveys and the AmeriSpeak survey are weighted separately and then combined into a survey representative of voters in all 50 states.
State Surveys
First, weights are constructed separately for the probability sample (when available) and the nonprobability sample for each state survey. These weights are adjusted to population totals to correct for demographic imbalances in age, gender, education and race/ethnicity of the responding sample compared to the population of registered voters in each state. In 2020, the adjustment targets are derived from a combination of data from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, Catalist’s voter file and the Census Bureau’s 2018 American Community Survey. Prior to adjusting to population totals, the probability-based registered voter list sample weights are adjusted for differential non-response related to factors such as availability of phone numbers, age, race and partisanship.
Second, all respondents receive a calibration weight. The calibration weight is designed to ensure the nonprobability sample is similar to the probability sample in regard to variables that are predictive of vote choice, such as partisanship or direction of the country, which cannot be fully captured through the prior demographic adjustments. The calibration benchmarks are based on regional level estimates from regression models that incorporate all probability and nonprobability cases nationwide.
Third, all respondents in each state are weighted to improve estimates for substate geographic regions. This weight combines the weighted probability (if available) and nonprobability samples, and then uses a small area model to improve the estimate within subregions of a state.
Fourth, the survey results are weighted to the actual vote count following the completion of the election. This weighting is done in 10–30 subregions within each state.
National Survey
In a general election, the national survey is weighted to combine the 50 state surveys with the nationwide AmeriSpeak survey. Each of the state surveys is weighted as described. The AmeriSpeak survey receives a nonresponse-adjusted weight that is then adjusted to national totals for registered voters that in 2020 were derived from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, the Catalist voter file and the Census Bureau’s 2018 American Community Survey. The state surveys are further adjusted to represent their appropriate proportion of the registered voter population for the country and combined with the AmeriSpeak survey. After all votes are counted, the national data file is adjusted to match the national popular vote for president.
The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.
In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.
Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.
Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.
The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.
There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).
This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.
Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.
Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).
In U.S. presidential elections since 1964, voter turnout among male and female voters has changed gradually but significantly, with women consistently voting at a higher rate than men since the 1980 election. 67 percent of eligible female voters took part in the 1964 election, compared to 72 percent of male voters. This difference has been reversed in recent elections, where the share of women who voted has been larger than the share of men by around four percent since 2004.
https://www.icpsr.umich.edu/web/ICPSR/studies/38506/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38506/terms
This dataset contains counts of voter registration and voter turnout for all counties in the United States for the years 2004-2022. It also contains measures of each county's Democratic and Republican partisanship, including six-year longitudinal partisan indices for 2006-2022.
This dataset was used to conduct the NYC Campaign Finance Board's voter participation research, published in the 2019-2020 Voter Analysis Report. Each row contains information about an active voter in 2018 and their voting history dating back to 2008, along with geographical information from their place of residence for each year they were registered voters. Because this dataset contains only active voters in the year 2018, this dataset cannot be used to calculate election turnout.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In this paper, we revisit the effect of ballot access laws on voter confidence in the outcome of elections. We argue that voter confidence is conditioned by partisanship. Democrats and Republicans view election laws through a partisan lens, which is especially triggered when coalitions lose. We used The Integrity of Voting data set, along with other data sets, to test our hypotheses. The sample frame for the Integrity of Voting Survey was eligible persons who voted in the 2020 Presidential elections with accessible internet email addresses. Our sample consisted of two samples from two different vendors. Surveys were conducted with 17,526 voters drawing on two independent samples of registered voters who reported voting in the 2020 Presidential election. Email addresses for registered voters in each state were purchased from L2, a commercial vendor specializing in obtaining email addresses for registered voters. Interviews were solicited from one million voters in all 50 states, with 10,770 completed interviews for a response rate of .011%. A second sample of internet interviews were solicited and completed with 6,756 2020 voters using Dynata’s proprietary select-in survey of voters in selected states with smaller populations of registered voters. A minimum of roughly 100 2020 election voters were interviewed in each state. Our state samples were weighted using a raking technique on age, race, gender, education, and vote mode demographics from the U.S. Census Bureau’s 2020 Voting and Registration in the Election of November 2020 supplement to the Current Population survey (2021), as well as party identification totals from post-election exit polls conducted by the Associated Press (2020). Surveys were conducted between the first week in December, 2020 and the first week in February 2021.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
National and state turnout rates for the voting-eligible population in US election
NYU Libraries has licensed access to the L2 Political Academic Voter File. The file is a continuously updated dataset consisting of public information for every registered voter in the United States and includes basic socio-demographic indicators (some of which are modeled), consumer preferences, political party affiliation, voting history, and more.
The data consists of .tab files organized into individual state folders (all states and DC). Each state folder contains two files: demographics data and voter history data, with a data dictionary for each dataset. The size of the folders vary by state and data for all states adds up to approximately 40 GB. The data is organized into releases, generally two per year (spring and fall), which represent a snapshot of the country's voters at the time of the dataset creation.
NYU has also licensed access to L2 Political historical backlog of data. This backlog includes versions of the L2 Processed voter file going back to 2008 (for most U.S. states) and unprocessed "raw" state voter rolls, also going back to 2008 for most U.S. states.
This collection is available to NYU faculty and students only, and requires user to first submit a data management plan to account for how access and storage of the data will be handled. Information on how to submit a request to use this data and create a data management plan is available at https://guides.nyu.edu/l2political.
This dataset contains voter registration data in Iowa by month and county starting with January 2000. It identifies the number of voters registered as Democrats, Republicans, other party or no party. Libertarians were reported separately March 2017 through January 2019, and beginning again in January 2023. The dataset also identifies the number of active and inactive voter registrations. Inactive voters are those to whom official mailings have been sent from the county auditor’s office, the notice was returned as undeliverable by the United States Postal Service and the voter has not responded to a follow up confirmation notice. [§48A.37]
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains voter registration data in Iowa by month and state house district starting with June 2021. It identifies the number of voters registered as Democrats, Republicans, other party or no party. The dataset also identifies the number of active and inactive voter registrations. Inactive voters are those to whom official mailings have been sent from the county auditor’s office, the notice was returned as undeliverable by the United States Postal Service and the voter has not responded to a follow up confirmation notice. [§48A.37]
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data and documentation for the 2016 Survey of the Performance of American Elections.
Scholarship on women voters in the United States has focused on the gender gap showing that women are more likely to vote for Democratic Party candidates than men since the 1980s. The persistence of the gender gap has nurtured the conclusion that women are Democrats. This article presents evidence upending that conventional wisdom. Data from the American National Election Study are analyzed to demonstrate that white women are the only group of female voters who support Republican Party candidates for president. They have done so by a majority in all but 2 of the last 18 elections. The relevance of race for partisan choice among women voters is estimated with data collected in 2008, 2012, and 2016, and the significance of being white is identified after accounting for political party identification and other predictors.
Research suggests that partisans are increasingly avoiding members of the other party—in their choice of neighborhood, social network, even their spouse. Leveraging a national database of voter registration records, we analyze 18 million households in the U.S. We find that three in ten married couples have mismatched party affiliations. We observe the relationship between inter-party marriage and gender, age, and geography. We discuss how the findings bear on key questions of political behavior in the US. Then, we test whether mixed-partisan couples participate less actively in politics. We find that voter turnout is correlated with the party of one’s spouse. A partisan who is married to a co-partisan is more likely to vote. This phenomenon is especially pronounced for partisans in closed primaries, elections in which non-partisan registered spouses are ineligible to participate.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the secret ballot has been secured as a legal matter in the United States, formal secrecy protections are not equivalent to convincing citizens that they may vote privately and without fear of reprisal. We present survey evidence that those who have not previously voted are particularly likely to voice doubts about the secrecy of the voting process. We then report results from a field experiment where we mailed information about protections of ballot secrecy to registered voters prior to the 2010 general election. Consistent with our survey data, we find that these letters increased turnout for registered citizens without records of previous turnout, but did not appear to influence the behavior of citizens who had previously voted. The increase in turnout of more than three percentage points (20%) for those without previous records of voting is notably larger than the effect of a standard get-out-the-vote mailing for this group. Overall, these results suggest that although the secret ballot is a long-standing institution in the United States, beliefs about this institution may not match the legal reality. Providing basic information about ballot secrecy can cause former non-voters to participate.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OGKLDOhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OGKLDO
Political campaigns spend months ahead of an election contacting voters. Through voter contact, politicians build coalitions, make campaign promises, and engage citizens in the electoral process. How do campaigns decide which voters to communicate with and which voters to ignore? Campaigns seek out supporters to mobilize and ambivalent voters to persuade, but how do they know who is likely to be supportive or persuadable? The theory of informational resources I develop posits that candidate strategy is highly dependent on available data. Political campaigns have a limited set of resources with which they can sort the electorate into likely supporters, persuadables, and opponents. The information that enables them to sort the electorate comes primarily from public records, namely voter registration files. Because the laws that govern data collection vary by jurisdiction, political campaign strategy varies geographically as a function of available information. To understand the role of information in strategic decision-making, I investigate a database containing all registered voters in the United States that is used by actual campaigns for the purpose of voter contact. Three essays relay the findings from this database and from interviews with campaign operatives. The first essay explores strategies for identifying likely partisan supporters. I find that in states that do not collect party data in the public record, political campaigns cannot easily identify their own supporters. The second essay explores strategies for identifying persuadable voters. On account of data limitations, the voters that campaigns typically target with persuasion messages are a completely different set of individuals from those who would appear to be undecided, independent, or cross-pressured according to survey measures. The third essay explores the role of racial identifiers that are listed on the public recor d in eight southern states. When racial data is available, candidates sort the electorate by race, leading to the mobilization of voters whose races are identified and to racial polarization of voters into different parties. The role of information in guiding campaign strategy challenges extant models of political mobilization and identifies important political consequences of the recent and dramatic developments in data availability.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What are the opinions of American registered voters about election fraud and types of election fraud as we head into the final stages of the 2024 Presidential election? In this paper we use data from an online national survey of 2,211 U.S. registered voters interviewed between June 26 - July 3, 2024. Respondents were asked how common they thought that ten different types of election fraud might be in the U.S. In our analysis, we show that substantial proportions of U.S. registered voters believe that these types of election fraud are common. Our multivariate analysis shows that partisanship correlates strongly with endorsement of types of election fraud, with Republicans consistently more likely to state that types of election fraud are common, even when we control for a wide variety of other factors. We also find that conspiratorial thinking is strongly correlated with belief in the occurrence of types of election fraud, even when we control for partisanship. Our results reported in this paper provide important data regarding how American registered voters perceive the prevalence of types of election fraud, just months before the 2024 Presidential election.
https://www.icpsr.umich.edu/web/ICPSR/studies/26141/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/26141/terms
This special topic poll, fielded January 23-24, 2008, re-interviewed 163 South Carolina registered voters first surveyed December 13-17, 2007, and included an oversample of African Americans. The dataset includes their responses to call-back questions as well as to selected questions in the original poll, CBS NEWS/NEW YORK TIMES SOUTH CAROLINA PRIMARY POLL, DECEMBER 2007 (ICPSR 24364), which queried South Carolina voters on George W. Bush's presidency, the upcoming 2008 presidential campaign and South Carolina presidential primary, whether they had ever voted in a primary, their opinions of the Democratic presidential nominees, and the likelihood that they would vote for a presidential candidate of a different race and gender than their own. In the call-back poll conducted a few days prior to the South Carolina Democratic primary on January 26, 2008, voters were re-interviewed about how much attention they were paying to the 2008 presidential race, the likelihood that they would vote in the upcoming Democratic presidential primary, if they had changed their choice of candidate since the last survey and why, the importance of the results of other state's primaries in their vote, and their opinions of Democratic presidential nominees Barack Obama, Hillary Clinton, and John Edwards. Questions were also posed regarding Bill Clinton's involvement in Hillary Clinton's campaign and whether America was ready to elect a president who was Black or a woman. Respondents who already voted in South Carolina's Republican primary on January 19, 2008, were asked for whom they had voted. Demographic information includes sex, age, race, education level, household income, marital status, type of residential area (e.g., urban or rural), political party affiliation, political philosophy, voter registration status and participation history, labor union membership, the presence of children under 18, religious preference, frequency of religious attendance, whether respondents considered themselves to be born-again Christians, and whether any household member had served in the armed forces in Iraq.
This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.