20 datasets found
  1. Email Dataset for Automatic Response Suggestion within a University

    • figshare.com
    pdf
    Updated Feb 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aditya Singh; Dibyendu Mishra; Sanchit Bansal; Vinayak Agarwal; Anjali Goyal; Ashish Sureka (2018). Email Dataset for Automatic Response Suggestion within a University [Dataset]. http://doi.org/10.6084/m9.figshare.5853057.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 4, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Aditya Singh; Dibyendu Mishra; Sanchit Bansal; Vinayak Agarwal; Anjali Goyal; Ashish Sureka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We have developed an application and solution approach (using this dataset) for automatically generating and suggesting short email responses to support queries in a university environment. Our proposed solution can be used as one tap or one click solution for responding to various types of queries raised by faculty members and students in a university. Office of Academic Affairs (OAA), Office of Student Life (OSL) and Information Technology Helpdesk (ITD) are support functions within a university which receives hundreds of email messages on the daily basis. Email communication is still the most frequently used mode of communication by these departments. A large percentage of emails received by these departments are frequent and commonly used queries or request for information. Responding to every query by manually typing is a tedious and time consuming task. Furthermore a large percentage of emails and their responses are consists of short messages. For example, an IT support department in our university receives several emails on Wi-Fi not working or someone needing help with a projector or requires an HDMI cable or remote slide changer. Another example is emails from students requesting the office of academic affairs to add and drop courses which they cannot do it directly. The dataset consists of emails messages which are generally received by ITD, OAA and OSL in Ashoka University. The dataset also contains intermediate results while conducting machine learning experiments.

  2. Enron Email Time-Series Network

    • zenodo.org
    • explore.openaire.eu
    csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volodymyr Miz; Benjamin Ricaud; Pierre Vandergheynst; Volodymyr Miz; Benjamin Ricaud; Pierre Vandergheynst (2020). Enron Email Time-Series Network [Dataset]. http://doi.org/10.5281/zenodo.1342353
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Volodymyr Miz; Benjamin Ricaud; Pierre Vandergheynst; Volodymyr Miz; Benjamin Ricaud; Pierre Vandergheynst
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We use the Enron email dataset to build a network of email addresses. It contains 614586 emails sent over the period from 6 January 1998 until 4 February 2004. During the pre-processing, we remove the periods of low activity and keep the emails from 1 January 1999 until 31 July 2002 which is 1448 days of email records in total. Also, we remove email addresses that sent less than three emails over that period. In total, the Enron email network contains 6 600 nodes and 50 897 edges.

    To build a graph G = (V, E), we use email addresses as nodes V. Every node vi has an attribute which is a time-varying signal that corresponds to the number of emails sent from this address during a day. We draw an edge eij between two nodes i and j if there is at least one email exchange between the corresponding addresses.

    Column 'Count' in 'edges.csv' file is the number of 'From'->'To' email exchanges between the two addresses. This column can be used as an edge weight.

    The file 'nodes.csv' contains a dictionary that is a compressed representation of time-series. The format of the dictionary is Day->The Number Of Emails Sent By the Address During That Day. The total number of days is 1448.

    'id-email.csv' is a file containing the actual email addresses.

  3. d

    Global Cyber Risk Data | Email Address Validation | Drive Decisions on...

    • datarade.ai
    .json, .csv
    Updated Nov 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datazag (2024). Global Cyber Risk Data | Email Address Validation | Drive Decisions on Domain Security and Email Deliverability [Dataset]. https://datarade.ai/data-products/datazag-global-cyber-risk-data-email-address-validation-datazag
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 2, 2024
    Dataset authored and provided by
    Datazag
    Area covered
    Ethiopia, Romania, Iceland, Japan, Sao Tome and Principe, Greece, Ecuador, Slovakia, El Salvador, Tajikistan
    Description

    DomainIQ is a comprehensive global Domain Name dataset for organizations that want to build cyber security, data cleaning and email marketing applications. The dataset consists of the DNS records for over 267 million domains, updated daily, representing more than 90% of all public domains in the world.

    The data is enriched by over thirty unique data points, including identifying the mailbox provider for each domain and using AI based predictive analytics to identify elevated risk domains from both a cyber security and email sending reputation perspective.

    DomainIQ from Datazag offers layered intelligence through a highly flexible API and as a dataset, available for both cloud and on-premises applications. Standard formats include CSV, JSON, Parquet, and DuckDB.

    Custom options are available for any other file or database format. With daily updates and constant research from Datazag, organizations can develop their own market leading cyber security, data cleaning and email validation applications supported by comprehensive and accurate data from Datazag. Data updates available on a daily, weekly and monthly basis. API data is updated on a daily basis.

  4. Aeslc (Email Subject Generation Task)

    • kaggle.com
    Updated Dec 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Aeslc (Email Subject Generation Task) [Dataset]. https://www.kaggle.com/datasets/thedevastator/uncovering-enron-employees-secrets-exploring-the
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 1, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Aeslc (Email Subject Generation Task)

    A collection of email messages of employees in the Enron Corporation.

    By Huggingface Hub [source]

    About this dataset

    The AESLC (Automatic Extraction of Semantically-Linked Corporate Communications) dataset provides a unique and captivating glimpse into the lives of Enron employees - from the perspective of communications sent via emails during a period between 1999 to 2004. These anonymous emails not only provide fascinating insight into the daily professional activities, interactions, and relationships within Enron employees, but also offer an educational opportunity for those interested in further exploring corporate communication. Containing such features as email body and subject lines, researchers can tap into this invaluable resource to research topics surrounding linguistics, sentiment analysis, and data mining. Unlock their secrets by discovering what messages were shared amongst these before the breach of scandal that caused their company’s downfall!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This comprehensive dataset includes anonymized emails sent by then Enron employees in the period of 1999 and 2004. By delving into this unique dataset, you can gain a deeper insight into the lives of former Enron employees as well as their professional activities and relationships.

    In this guide, we'll provide a walkthrough on how to use this dataset and make meaningful discoveries from it. Let's get started!

    Research Ideas

    • Analyzing the connections between Enron employees by tracking their email communications over time to uncover trends and correlations.
    • Examining the emails for keywords or topics as a way to classify each email in order to gain better understanding of what Enron employees were discussing and what activities they were engaging in.
    • Using sentiment analysis techniques on the emails in order to gain insight into the emotional state of Enron employees at different points in time or during particular events or incidents such as when allegations against Enron emerged

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: validation.csv | Column name | Description | |:-----------------|:--------------------------------------------------------------| | email_body | The body of the email sent by Enron employees. (Text) | | subject_line | The subject line of the email sent by Enron employees. (Text) |

    File: train.csv | Column name | Description | |:-----------------|:--------------------------------------------------------------| | email_body | The body of the email sent by Enron employees. (Text) | | subject_line | The subject line of the email sent by Enron employees. (Text) |

    File: test.csv | Column name | Description | |:-----------------|:--------------------------------------------------------------| | email_body | The body of the email sent by Enron employees. (Text) | | subject_line | The subject line of the email sent by Enron employees. (Text) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Huggingface Hub.

  5. c

    ckanext-reminder - Extensions - CKAN Ecosystem Catalog

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-reminder - Extensions - CKAN Ecosystem Catalog [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-reminder
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The Reminder extension for CKAN enhances data management by providing automated email notifications based on dataset expiry dates and update subscriptions. Designed to work with CKAN versions 2.2 and up, but tested on 2.5.2, this extension offers a straightforward mechanism for keeping users informed about dataset updates and expirations, promoting better data governance and engagement. The extension leverages a daily cron job to check expiry dates and trigger emails. Key Features: Data Expiry Notifications: Sends email notifications when datasets reach their specified expiry date. A daily cronjob process determines when to send these emails. Note that failure of the cronjob will prevent email delivery for that day. Dataset Update Subscriptions: Allows users to subscribe to specific datasets to receive notifications upon updates via a subscription form snippet that can be included in dataset templates. Unsubscribe Functionality: Includes an unsubscribe link in each notification email, enabling users to easily manage their subscriptions. Configuration Settings: Supports at least one recipient for reminder emails via configuration settings in the CKAN config file. Bootstrap Styling: Intended for use with Bootstrap 3+ for styling, but may still work with Bootstrap 2 with potential style inconsistencies. Technical Integration: The Reminder extension integrates into CKAN via plugins, necessitating the addition of reminder to the ckan.plugins setting in the CKAN configuration file. The extension requires database initialization using paster commands to support the subscription functionality. Setting up a daily cronjob is necessary for the automated sending of reminder and notification emails. Benefits & Impact: By implementing the Reminder extension, CKAN installations can improve data management and user engagement. Automated notifications ensure that stakeholders are aware of dataset expirations and updates, leading to better data governance, and more active user involvement in data ecosystems. This extension provides an easy-to-implement solution for managing data lifecycles and keeping users informed.

  6. d

    Global Fraud Detection Data | B2B List Validation and Data Cleansing |...

    • datarade.ai
    .json, .csv
    Updated Nov 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datazag (2024). Global Fraud Detection Data | B2B List Validation and Data Cleansing | Domain Risk Classification & Identification | Updated Daily [Dataset]. https://datarade.ai/data-products/datazag-global-fraud-detection-data-b2b-list-validation-an-datazag
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 2, 2024
    Dataset authored and provided by
    Datazag
    Area covered
    Grenada, Ascension and Tristan da Cunha, United Arab Emirates, Saudi Arabia, Malawi, Sao Tome and Principe, Tunisia, Tonga, Congo (Democratic Republic of the), Comoros
    Description

    DomainIQ is a comprehensive global Domain Name dataset for organizations that want to build cyber security, data cleaning and email marketing applications. The dataset consists of the DNS records for over 267 million domains, updated daily, representing more than 90% of all public domains in the world.

    The data is enriched by over thirty unique data points, including identifying the mailbox provider for each domain and using AI based predictive analytics to identify elevated risk domains from both a cyber security and email sending reputation perspective.

    DomainIQ from Datazag offers layered intelligence through a highly flexible API and as a dataset, available for both cloud and on-premises applications. Standard formats include CSV, JSON, Parquet, and DuckDB.

    Custom options are available for any other file or database format. With daily updates and constant research from Datazag, organizations can develop their own market leading cyber security, data cleaning and email marketing applications supported by comprehensive and accurate data from Datazag. Data updates available on a daily, weekly and monthly basis. API data is updated on a daily basis.

  7. o

    Golf Play Dataset Extended

    • opendatabay.com
    .undefined
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Golf Play Dataset Extended [Dataset]. https://www.opendatabay.com/data/ai-ml/23026657-8212-4f36-84a0-f6064a0b889b
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Datasimple
    Area covered
    Education & Learning Analytics
    Description

    Overview This Extended Golf Play Dataset is a rich and detailed collection designed to extend the classic golf dataset. It includes a variety of features to cover many aspects of data science. This dataset is especially useful for teaching because it offers many small datasets within it, each one created for a different learning purpose.

    Core Features: Outlook: Type of weather (sunny, cloudy, rainy, snowy). Temperature: How hot or cold it is, in Celsius. Humidity: How much moisture is in the air, as a percent. Windy: If it is windy or not (True or False). Play: If golf was played or not (Yes or No). Extra Features: ID: Each player's unique number. Date: The day the data was recorded. Weekday: What day of the week it is. Holiday: If the day is a special holiday (Yes or No). Season: Time of the year (spring, summer, autumn, winter). Crowded-ness: How crowded the golf course is. PlayTime-Hour: How long people played golf, in hours. Text Features: Review: What players said about their day at golf. EmailCampaign: Emails the golf place sent every day. MaintenanceTasks: Work done to take care of the golf course. Mini Datasets Collection This dataset includes a special set of mini datasets:

    Each mini dataset focuses on a specific teaching point, like how to clean data or how to combine datasets. They're perfect for beginners to practice with real examples. Along with these datasets, you'll find notebooks with step-by-step guides that show you how to use the data. Learning With This Dataset Students can use this dataset to learn many skills:

    Seeing Data: Learn how to make graphs and see patterns. Sorting Data: Find out which data helps to predict if golf will be played. Finding Odd Data: Spot data that doesn't look right. Understanding Data Over Time: Look at how things change day by day or month by month. Grouping Data: Learn how to put similar days together. Learning From Text: Use players' reviews to get more insights. Making Recommendations: Suggest the best time to play golf based on past data. Who Can Use This Dataset This dataset is for everyone:

    New Learners: It's easy to understand and has guides to help you learn. Teachers: Great for classes on how to see and understand data. Researchers: Good for testing new ways to analyze data.

    Original Data Source: ⛳️ Golf Play Dataset Extended

  8. Astronomer's Telegram Dataset

    • kaggle.com
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naman Jaswani (2020). Astronomer's Telegram Dataset [Dataset]. https://www.kaggle.com/datasets/namanj27/astronomers-telegram-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2020
    Dataset provided by
    Kaggle
    Authors
    Naman Jaswani
    Description

    Context

    The Astronomer's Telegram (ATel) is an internet-based short notice publication service for quickly disseminating information on new astronomical observations. Telegrams as available instantly on the service's website and distributed to subscribers via email digest within 24 hours.– The Astronomer's Telegram was launched on 17 December 1997 by Robert E. Rutledge with the goal of rapidly (<1 s) sharing information of interest to astronomers. Telegrams are sent out daily by email, but especially time-sensitive events can be transmitted instantly.

    Content

    The dataset contains two files: 1. Original Text file [Not processed] 2. CSV file with one ATEL in each row [partially processed]

    Acknowledgements

    My project partner : Adeem

    References

    The official Astronomer's Telegram website

  9. Z

    LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Herrnegger, Mathew (2024). LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe – files [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4525244
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Schulz, Karsten
    Kratzert, Frederik
    Herrnegger, Mathew
    Klingler, Christoph
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Central Europe
    Description

    Version 1.0 - This version is the final revised one.

    This is the LamaH-CE dataset accompanying the paper: Klingler et al., LamaH-CE | LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe, published at Earth System Science Data (ESSD), 2021 (https://doi.org/10.5194/essd-13-4529-2021).

    LamaH-CE contains a collection of runoff and meteorological time series as well as various (catchment) attributes for 859 gauged basins. The hydrometeorological time series are provided with daily and hourly time resolution including quality flags. All meteorological and the majority of runoff time series cover a span of over 35 years, which enables long-term analyses with high temporal resolution. LamaH is in its basics quite sililar to the well-known CAMELS datasets for the contiguous United States (https://doi.org/10.5194/hess-21-5293-2017), Chile (https://doi.org/10.5194/hess-22-5817-2018), Brazil (https://doi.org/10.5194/essd-12-2075-2020), Great Britain (https://doi.org/10.5194/essd-12-2459-2020) and Australia (https://doi.org/10.5194/essd-13-3847-2021), but new features like additional basin delineations (intermediate catchments) and attributes allow to consider the hydrological network and river topology in further applications.

    We provide two different files to download: 1) Hydrometeorological time series with daily and hourly resolution, which requires decompressed about 70 GB of free disk space. 2) Hydrometeorological time series only with daily resolution, which requires 5 GB. Beyond the temporal resolution of the time series, there are no differences.

    Note: It is recommended to read the supplementary info file before using the dataset. For example, it clarifies the time conventions and that NAs are indicated by the number -999 in the runoff time series.

    Disclaimer: We have created LamaH with care and checked the outputs for plausibility. By downloading the dataset, you agree that we nor the provider of the used source datasets (e.g. runoff time series) cannot be liable for the data provided. The runoff time series of the German federal states Bavaria and Baden-Württemberg are retrospective checked and updated by the hydrographic services. Therefore, it might be appropriate to obtain more up-to-date runoff data from Bavaria (https://www.gkd.bayern.de/en/rivers/discharge/tables) and Baden-Württemberg (https://udo.lubw.baden-wuerttemberg.de/public/p/pegel_messwerte_leer). Runoff data from the Czech Republic may not be used to set up operational warning systems (https://www.chmi.cz/files/portal/docs/hydro/denni_data/Podminky_uziti.pdf).

    License: This work is licensed with CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/). This means that you may freely use and modify the data (even for commercial purposes). But you have to give appropriate credit (associated ESSD paper, version of dataset and all sources which are declared in the folder "Info"), indicate if and what changes were made and distribute your work under the same public license as the original.

    Additional references: We ask kindly for compliance in citing the following references when using LamaH, as an agreement to cite was usually a condition of sharing the data: BAFU (2020), CHMI (2020), GKD (2020), HZB (2020), LUBW (2020), BMLFUW (2013), Broxton et al. (2014), CORINE (2012), EEA (2019), ESDB (2004), Farr et al. (2007), Friedl and Sulla-Menashe (2019), Gleeson et al. (2014), HAO (2007), Hartmann and Moosdorf (2012), Hiederer (2013a, b), Linke et al. (2019), Muñoz Sabater et al. (2021), Muñoz Sabater (2019a), Myneni et al. (2015), Pelletier et al. (2016), Toth et al. (2017), Trabucco and Zomer (2019), and Vermote (2015). These references are listed in detail in the accompanying paper.

    Supplements: We have created additional files after publication (therefore non peer-reviewed): 1) Shapefiles for reservoirs (points) and cross-basin water transfers (lines) including several attributes as well as tables with information about the accumulated storage volume and effective catchment area (considerung artificial in- and outflows) for every runoff gauge. 2) Water quality data (e.g. dissolved oxygen, water temperature, conductivity, NO3-N), which are suitable to the gauges. The data for water quality may not be used for commercial purposes. If you are interessted, just send us an email with your name, affiliation and the intended purpose for the requested files to the address listed below. If you find any errors in the dataset, feel free to send us an email to: christoph.klingler@boku.ac.at

  10. d

    Audience Targeting Data I US Consumer | Behavioral Intelligence | Purchase,...

    • datarade.ai
    .csv, .xls
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (formerly Solution Publishing) (2023). Audience Targeting Data I US Consumer | Behavioral Intelligence | Purchase, Shopper, Lifestyle Data | Verified Email, Phone, Address [Dataset]. https://datarade.ai/data-categories/consumer-data/datasets
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    Allforce (formerly Solution Publishing)
    Area covered
    United States of America
    Description

    Access high-fidelity consumer data powered by our proprietary modeling technology that provides the most comprehensive consumer intelligence, accurate targeting, first-party data enrichment, and personalization at scale. Our deterministic dataset, anchored in the purchasing habits of over 140 million U.S. consumers, delivers superior targeting performance with proven 70% increase in ROAS.

    Core Data Assets Transactional Data Foundation: Real purchasing behavior from over 140 million U.S. consumers with 8.5 billion behavioral signals across 250 million adults. Seven years of daily credit card and debit card purchase data aggregated from all major credit cards sourced from more than 300 national banks, capturing $2+ trillion in annual discretionary spending.

    Consumer Demographics & Lifestyle: Comprehensive profiles including age, income, household composition, geographic distribution, education, employment, and lifestyle indicators. Our proprietary taxonomy organizes consumer spending across 8,000+ brands and 2,500+ merchants, from major retailers to emerging direct-to-consumer brands.

    Behavioral Segmentation: 150+ custom consumer communities including demographic groups (Gen Z, Millennials, Gen X), lifestyle segments (Health & Fitness Enthusiasts, Tech Early Adopters, Luxury Shoppers), and behavioral categories (Deal Seekers, Brand Loyalists, Premium Service Users, Streaming Subscribers). Purchase Intelligence: Deep insights into consumer spending patterns across entertainment, fitness, fashion, technology, travel, dining, and retail categories. Our models identify cross-category purchasing behaviors, seasonal trends, and brand switching patterns to optimize targeting strategies. Advanced Modeling Technology

    Our proprietary consumer intelligence engine combines deterministic transaction-based data with Smart Audience Engineering that transforms first-party signals from anonymized website traffic, behavioral indicators, and CRM enrichment into precision-modeled segments. Unlike traditional data providers who sell static lists, our AI-powered predictive modeling continuously learns and optimizes for unprecedented precision and superior conversion outcomes.

    Performance Advantages: Audiences built on user-level transactional data deliver 70% increase in ROAS compared to traditional targeting methods. Weekly-optimized audiences with performance narratives eliminate wasted ad spend by 20-30%, while our deterministic AI models analyze hundreds of attributes and conversion-validated signals to identify prospects with genuine purchase intent, not just lookalike behaviors.

  11. o

    Elon Musk Tweets (Updated Daily Automatically)

    • opendatabay.com
    .undefined
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Elon Musk Tweets (Updated Daily Automatically) [Dataset]. https://www.opendatabay.com/data/ai-ml/3d5a7757-1cfd-423d-b3a9-b2a8449d337c
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Social Media and Networking
    Description

    Dataset of Elon musk tweets updated and recorded automatically every day starting from September 2, 2021 (due to a limit of Twitter API)

    Content tweets only (if the tweet is not a reply of any other tweet)

    License

    CC0

    Original Data Source: Elon Musk Tweets (Updated Daily Automatically)

  12. Immigration system statistics data tables

    • gov.uk
    • totalwrapture.com
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional dat

  13. A

    ‘Medallion Drivers - Active’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘Medallion Drivers - Active’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-medallion-drivers-active-f38e/latest
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Medallion Drivers - Active’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/1c75e7ca-9626-4f3b-b18e-39c1efbc7f11 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    PLEASE NOTE: This dataset, which includes all TLC Licensed Drivers who are in good standing and able to drive, is updated every day in the evening between 4-7pm. Please check the 'Last Update Date' field to make sure the list has updated successfully. 'Last Update Date' should show either today or yesterday's date, depending on the time of day. If the list is outdated, please download the most recent list from the link below. http://www1.nyc.gov/assets/tlc/downloads/datasets/tlc_medallion_drivers_active.csv

    This is a list of drivers with a current TLC Driver License, which authorizes drivers to operate NYC TLC licensed yellow and green taxicabs and for-hire vehicles (FHVs). This list is accurate as of the date and time shown in the Last Date Updated and Last Time Updated fields. Questions about the contents of this dataset can be sent by email to: licensinginquiries@tlc.nyc.gov.

    --- Original source retains full ownership of the source dataset ---

  14. n

    InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/interagencyfireperimeterhistory-all-years-view
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email

  15. g

    Medallion Drivers - Active | gimi9.com

    • gimi9.com
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Medallion Drivers - Active | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_medallion-drivers-active
    Explore at:
    Dataset updated
    Apr 2, 2020
    Description

    PLEASE NOTE: This dataset, which includes all TLC Licensed Drivers who are in good standing and able to drive, is updated every day in the evening between 4-7pm. Please check the 'Last Update Date' field to make sure the list has updated successfully. 'Last Update Date' should show either today or yesterday's date, depending on the time of day. If the list is outdated, please download the most recent list from the link below. http://www1.nyc.gov/assets/tlc/downloads/datasets/tlc_medallion_drivers_active.csv This is a list of drivers with a current TLC Driver License, which authorizes drivers to operate NYC TLC licensed yellow and green taxicabs and for-hire vehicles (FHVs). This list is accurate as of the date and time shown in the Last Date Updated and Last Time Updated fields. Questions about the contents of this dataset can be sent by email to: licensinginquiries@tlc.nyc.gov.

  16. z

    Aggregated Virtual Patient Model Dataset

    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantinos Deltouzos; Konstantinos Deltouzos (2020). Aggregated Virtual Patient Model Dataset [Dataset]. http://doi.org/10.5281/zenodo.2670048
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodo
    Authors
    Konstantinos Deltouzos; Konstantinos Deltouzos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is a collection of aggregated clinical parameters for the participants (such as clinical scores), parameters extracted from the utilized devices (such as average heart rate per day, average gait speed etc.), and coupled events about them (such as falls, loss of orientation etc.). It contains information which was collected during the clinical evaluation of the older people from medical experts.This information represents the clinical status of the older person across different domains, e.g. physical, psychological, cognitive etc.

    The dataset contains several medical features which are used by clinicians to assess the overall state of the older people.

    The purpose of the Virtual Patient Model is to assess the overall state of the older people based on their medical parameters, and to find associations between these parameters and frailty status.

    A list of the recorded clinical parameters and their description is shown below:

    - part_id: The user ID, which should be a 4-digit number

    - q_date: The recording timestamp, which follows the “YYYY-MM-DDTHH:mm:ss.fffZ” format (eg. 14 September 2017 12:23:34.567, is formatted as 2019-09-14T12:23:34.567Z)

    - clinical_visit: As several clinical evaluations were performed to each older adult, this number shows for which clinical evaluation these measurements refer to

    - fried: Ordinal categorization of frailty level according to Fried operational definition of frailty

    - hospitalization_one_year: Number of nonscheduled hospitalizations in the last year

    - hospitalization_three_years: Number of nonscheduled hospitalizations in the last three years

    - ortho_hypotension: Presence of orthostatic hypotension

    - vision: Visual difficulty (qualitative ordinal evaluation)

    - audition: Hearing difficulty (qualitative ordinal evaluation)

    - weight_loss: Unintentional weight loss >4.5 kg in the past year (categorical answer)

    - exhaustion_score: Self-reported exhaustion (categorical answer)

    - raise_chair_time: Time in seconds to perform a lower limb strength clinical test

    - balance_single: Single foot station (Balance) (categorical answer)

    - gait_get_up: Time in seconds to perform the 3meters’ Timed Get Up And Go Test

    - gait_speed_4m: Speed for 4 meters’ straight walk

    - gait_optional_binary: Gait optional evaluation (qualitative evaluation by the investigator)

    - gait_speed_slower: Slowed walking speed (categorical answer)

    - grip_strength_abnormal: Grip strength outside the norms (categorical answer)

    - low_physical_activity: Low physical activity (categorical answer)

    - falls_one_year: Number of falls in the last year

    - fractures_three_years: Number of fractures during the last 3 years

    - fried_clinician: Fried’s categorization according to clinician’s estimation (when missing data for answering the Fried’s operational frailty definition questionnaire)

    - bmi_score: Body Mass Index (in Kg/m²)

    - bmi_body_fat: Body Fat (%)

    - waist: Waist circumference (in cm)

    - lean_body_mass: Lean Body Mass (%)

    - screening_score: Mini Nutritional Assessment (MNA) screening score

    - cognitive_total_score: Montreal Cognitive Assessment (MoCA) test score

    - memory_complain: Memory complain (categorical answer)

    - mmse_total_score: Folstein Mini-Mental State Exam score

    - sleep: Reported sleeping problems (qualitative ordinal evaluation)

    - depression_total_score: 15-item Geriatric Depression Scale (GDS-15)

    - anxiety_perception: Anxiety auto-evaluation (visual analogue scale 0-10)

    - living_alone: Living Conditions (categorical answer)

    - leisure_out: Leisure activities (number of leisure activities per week)

    - leisure_club: Membership of a club (categorical answer)

    - social_visits: Number of visits and social interactions per week

    - social_calls: Number of telephone calls exchanged per week

    - social_phone: Approximate time spent on phone per week

    - social_skype: Approximate time spent on videoconference per week

    - social_text: Number of written messages (SMS and emails) sent by the participant per week

    - house_suitable_participant: Subjective suitability of the housing environment according to participant’s evaluation (categorical answer)

    - house_suitable_professional: Subjective suitability of the housing environment according to investigator’s evaluation (categorical answer)

    - stairs_number: Number of steps to access house (without possibility to use elevator)

    - life_quality: Quality of life self-rating (visual analogue scale 0-10)

    - health_rate: Self-rated health status (qualitative ordinal evaluation)

    - health_rate_comparison: Self-assessed change since last year (qualitative ordinal evaluation)

    - pain_perception: Self-rated pain (visual analogue scale 0-10)

    - activity_regular: Regular physical activity (ordinal answer)

    - smoking: Smoking (categorical answer)

    - alcohol_units: Alcohol Use (average alcohol units consumption per week)

    - katz_index: Katz Index of ADL score

    - iadl_grade: Instrumental Activities of Daily Living score

    - comorbidities_count: Number of comorbidities

    - comorbidities_significant_count: Number of comorbidities which affect significantly the person’s functional status

    - medication_count: Number of active substances taken on a regular basis

  17. P

    Group SNAP Dataset

    • paperswithcode.com
    Updated Jul 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Group SNAP Dataset [Dataset]. https://paperswithcode.com/dataset/group-snap-snap-suitesparse-matrix-collection
    Explore at:
    Dataset updated
    Jul 21, 2018
    Description

    Networks from SNAP (Stanford Network Analysis Platform) Network Data Sets, Jure Leskovec http://snap.stanford.edu/data/index.html email jure at cs.stanford.edu

    Citation for the SNAP collection:

    @misc{snapnets, author = {Jure Leskovec and Andrej Krevl}, title = {{SNAP Datasets}: {Stanford} Large Network Dataset Collection}, howpublished = {\url{http://snap.stanford.edu/data}}, month = jun, year = 2014 }

    The following matrices/graphs were added to the collection in June 2010 by Tim Davis (problem id and name):

    2284 SNAP/soc-Epinions1 who-trusts-whom network of Epinions.com 2285 SNAP/soc-LiveJournal1 LiveJournal social network 2286 SNAP/soc-Slashdot0811 Slashdot social network, Nov 2008 2287 SNAP/soc-Slashdot0902 Slashdot social network, Feb 2009 2288 SNAP/wiki-Vote Wikipedia who-votes-on-whom network 2289 SNAP/email-EuAll Email network from a EU research institution 2290 SNAP/email-Enron Email communication network from Enron 2291 SNAP/wiki-Talk Wikipedia talk (communication) network 2292 SNAP/cit-HepPh Arxiv High Energy Physics paper citation network 2293 SNAP/cit-HepTh Arxiv High Energy Physics paper citation network 2294 SNAP/cit-Patents Citation network among US Patents 2295 SNAP/ca-AstroPh Collaboration network of Arxiv Astro Physics 2296 SNAP/ca-CondMat Collaboration network of Arxiv Condensed Matter 2297 SNAP/ca-GrQc Collaboration network of Arxiv General Relativity 2298 SNAP/ca-HepPh Collaboration network of Arxiv High Energy Physics 2299 SNAP/ca-HepTh Collaboration network of Arxiv High Energy Physics Theory 2300 SNAP/web-BerkStan Web graph of Berkeley and Stanford 2301 SNAP/web-Google Web graph from Google 2302 SNAP/web-NotreDame Web graph of Notre Dame 2303 SNAP/web-Stanford Web graph of Stanford.edu 2304 SNAP/amazon0302 Amazon product co-purchasing network from March 2 2003 2305 SNAP/amazon0312 Amazon product co-purchasing network from March 12 2003 2306 SNAP/amazon0505 Amazon product co-purchasing network from May 5 2003 2307 SNAP/amazon0601 Amazon product co-purchasing network from June 1 2003 2308 SNAP/p2p-Gnutella04 Gnutella peer to peer network from August 4 2002 2309 SNAP/p2p-Gnutella05 Gnutella peer to peer network from August 5 2002 2310 SNAP/p2p-Gnutella06 Gnutella peer to peer network from August 6 2002 2311 SNAP/p2p-Gnutella08 Gnutella peer to peer network from August 8 2002 2312 SNAP/p2p-Gnutella09 Gnutella peer to peer network from August 9 2002 2313 SNAP/p2p-Gnutella24 Gnutella peer to peer network from August 24 2002 2314 SNAP/p2p-Gnutella25 Gnutella peer to peer network from August 25 2002 2315 SNAP/p2p-Gnutella30 Gnutella peer to peer network from August 30 2002 2316 SNAP/p2p-Gnutella31 Gnutella peer to peer network from August 31 2002 2317 SNAP/roadNet-CA Road network of California 2318 SNAP/roadNet-PA Road network of Pennsylvania 2319 SNAP/roadNet-TX Road network of Texas 2320 SNAP/as-735 733 daily instances(graphs) from November 8 1997 to January 2 2000 2321 SNAP/as-Skitter Internet topology graph, from traceroutes run daily in 2005 2322 SNAP/as-caida The CAIDA AS Relationships Datasets, from January 2004 to November 2007 2323 SNAP/Oregon-1 AS peering information inferred from Oregon route-views between March 31 and May 26 2001 2324 SNAP/Oregon-2 AS peering information inferred from Oregon route-views between March 31 and May 26 2001 2325 SNAP/soc-sign-epinions Epinions signed social network 2326 SNAP/soc-sign-Slashdot081106 Slashdot Zoo signed social network from November 6 2008 2327 SNAP/soc-sign-Slashdot090216 Slashdot Zoo signed social network from February 16 2009 2328 SNAP/soc-sign-Slashdot090221 Slashdot Zoo signed social network from February 21 2009

    Then the following problems were added in July 2018. All data and metadata from the SNAP data set was imported into the SuiteSparse Matrix Collection.

    2777 SNAP/CollegeMsg Messages on a Facebook-like platform at UC-Irvine 2778 SNAP/com-Amazon Amazon product network 2779 SNAP/com-DBLP DBLP collaboration network 2780 SNAP/com-Friendster Friendster online social network 2781 SNAP/com-LiveJournal LiveJournal online social network 2782 SNAP/com-Orkut Orkut online social network 2783 SNAP/com-Youtube Youtube online social network 2784 SNAP/email-Eu-core E-mail network 2785 SNAP/email-Eu-core-temporal E-mails between users at a research institution 2786 SNAP/higgs-twitter twitter messages re: Higgs boson on 4th July 2012. 2787 SNAP/loc-Brightkite Brightkite location based online social network 2788 SNAP/loc-Gowalla Gowalla location based online social network 2789 SNAP/soc-Pokec Pokec online social network 2790 SNAP/soc-sign-bitcoin-alpha Bitcoin Alpha web of trust network 2791 SNAP/soc-sign-bitcoin-otc Bitcoin OTC web of trust network 2792 SNAP/sx-askubuntu Comments, questions, and answers on Ask Ubuntu 2793 SNAP/sx-mathoverflow Comments, questions, and answers on Math Overflow 2794 SNAP/sx-stackoverflow Comments, questions, and answers on Stack Overflow 2795 SNAP/sx-superuser Comments, questions, and answers on Super User 2796 SNAP/twitter7 A collection of 476 million tweets collected between June-Dec 2009 2797 SNAP/wiki-RfA Wikipedia Requests for Adminship (with text) 2798 SNAP/wiki-talk-temporal Users editing talk pages on Wikipedia 2799 SNAP/wiki-topcats Wikipedia hyperlinks (with communities)

    The following 13 graphs/networks were in the SNAP data set in July 2018 but have not yet been imported into the SuiteSparse Matrix Collection. They may be added in the future:

    amazon-meta ego-Facebook ego-Gplus ego-Twitter gemsec-Deezer gemsec-Facebook ksc-time-series memetracker9 web-flickr web-Reddit web-RedditPizzaRequests wiki-Elec wiki-meta wikispeedia

    The 2010 description of the SNAP data set gave these categories:

    • Social networks: online social networks, edges represent interactions between people

    • Communication networks: email communication networks with edges representing communication

    • Citation networks: nodes represent papers, edges represent citations

    • Collaboration networks: nodes represent scientists, edges represent collaborations (co-authoring a paper)

    • Web graphs: nodes represent webpages and edges are hyperlinks

    • Blog and Memetracker graphs: nodes represent time stamped blog posts, edges are hyperlinks [revised below]

    • Amazon networks : nodes represent products and edges link commonly co-purchased products

    • Internet networks : nodes represent computers and edges communication

    • Road networks : nodes represent intersections and edges roads connecting the intersections

    • Autonomous systems : graphs of the internet

    • Signed networks : networks with positive and negative edges (friend/foe, trust/distrust)

    By July 2018, the following categories had been added:

    • Networks with ground-truth communities : ground-truth network communities in social and information networks

    • Location-based online social networks : Social networks with geographic check-ins

    • Wikipedia networks, articles, and metadata : Talk, editing, voting, and article data from Wikipedia

    • Temporal networks : networks where edges have timestamps

    • Twitter and Memetracker : Memetracker phrases, links and 467 million Tweets

    • Online communities : Data from online communities such as Reddit and Flickr

    • Online reviews : Data from online review systems such as BeerAdvocate and Amazon

    https://sparse.tamu.edu/SNAP

  18. Lead Scoring Dataset

    • kaggle.com
    zip
    Updated Aug 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amrita Chatterjee (2020). Lead Scoring Dataset [Dataset]. https://www.kaggle.com/amritachatterjee09/lead-scoring-dataset
    Explore at:
    zip(411028 bytes)Available download formats
    Dataset updated
    Aug 17, 2020
    Authors
    Amrita Chatterjee
    Description

    Context

    An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

    The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.

    Now, although X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted. To make this process more efficient, the company wishes to identify the most potential leads, also known as ‘Hot Leads’. If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone.

    There are a lot of leads generated in the initial stage (top) but only a few of them come out as paying customers from the bottom. In the middle stage, you need to nurture the potential leads well (i.e. educating the leads about the product, constantly communicating, etc. ) in order to get a higher lead conversion.

    X Education wants to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score h have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

    Content

    Variables Description * Prospect ID - A unique ID with which the customer is identified. * Lead Number - A lead number assigned to each lead procured. * Lead Origin - The origin identifier with which the customer was identified to be a lead. Includes API, Landing Page Submission, etc. * Lead Source - The source of the lead. Includes Google, Organic Search, Olark Chat, etc. * Do Not Email -An indicator variable selected by the customer wherein they select whether of not they want to be emailed about the course or not. * Do Not Call - An indicator variable selected by the customer wherein they select whether of not they want to be called about the course or not. * Converted - The target variable. Indicates whether a lead has been successfully converted or not. * TotalVisits - The total number of visits made by the customer on the website. * Total Time Spent on Website - The total time spent by the customer on the website. * Page Views Per Visit - Average number of pages on the website viewed during the visits. * Last Activity - Last activity performed by the customer. Includes Email Opened, Olark Chat Conversation, etc. * Country - The country of the customer. * Specialization - The industry domain in which the customer worked before. Includes the level 'Select Specialization' which means the customer had not selected this option while filling the form. * How did you hear about X Education - The source from which the customer heard about X Education. * What is your current occupation - Indicates whether the customer is a student, umemployed or employed. * What matters most to you in choosing this course An option selected by the customer - indicating what is their main motto behind doing this course. * Search - Indicating whether the customer had seen the ad in any of the listed items. * Magazine
    * Newspaper Article * X Education Forums
    * Newspaper * Digital Advertisement * Through Recommendations - Indicates whether the customer came in through recommendations. * Receive More Updates About Our Courses - Indicates whether the customer chose to receive more updates about the courses. * Tags - Tags assigned to customers indicating the current status of the lead. * Lead Quality - Indicates the quality of lead based on the data and intuition the employee who has been assigned to the lead. * Update me on Supply Chain Content - Indicates whether the customer wants updates on the Supply Chain Content. * Get updates on DM Content - Indicates whether the customer wants updates on the DM Content. * Lead Profile - A lead level assigned to each customer based on their profile. * City - The city of the customer. * Asymmetric Activity Index - An index and score assigned to each customer based on their activity and their profile * Asymmetric Profile Index * Asymmetric Activity Score * Asymmetric Profile Score
    * I agree to pay the amount through cheque - Indicates whether the customer has agreed to pay the amount through cheque or not. * a free copy of Mastering The Interview - Indicates whether the customer wants a free copy of 'Mastering the Interview' or not. * Last Notable Activity - The last notable activity performed by the student.

    Acknowledgements

    UpGrad Case Study

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  19. P

    How Do I Contact "Bitdefender Customer Service"? A Simple Guide Dataset

    • paperswithcode.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How Do I Contact "Bitdefender Customer Service"? A Simple Guide Dataset [Dataset]. https://paperswithcode.com/dataset/how-do-i-contact-bitdefender-customer-service
    Explore at:
    Dataset updated
    Jun 20, 2025
    Description

    Click Here : Bitdefender Customer Service

    =================================================================================

    In today's fast-paced digital world, one of the most critical things for people and organizations to do is keep their cyber security up to date. Bitdefender is a well-known firm that provides strong antivirus and internet security software. Like with any other service or product, users may have problems or questions about their subscriptions, features, billing, or installation. At this point, Bitdefender's customer service is a very significant aspect of the support system. This complete guide is called "How Do I Get in Touch with 'Bitdefender Customer Service'?" This easy-to-follow article will show you how to get in touch with Bitdefender's support team in a few different ways so you can obtain fast, useful, and skilled help.

    Understanding How Important Bitdefender Customer Service Is When it comes to cybersecurity services, customer service is highly vital for keeping people pleased. Both new and long-time customers may have problems that pop up out of the blue. These can be issues with installation, activation keys, system compatibility, payment, or security. Bitdefender has a number of help options that are tailored to these situations. If you know how to reach them customer care, you may get your problems fixed quickly and with as little hassle as possible.

    Here are some things you should know before you call Bitdefender Support. You may speed up the process by doing a few things before you call Bitdefender's customer service. Be ready with the following information:

    Peacock Tv Login Peacock Tv Sign in Bitdefender Login Account Bitdefender Sign in Account Norton Login Norton Sign in

    The email address for your Bitdefender account

    Your Bitdefender Central login details

    The key or code that allows you utilize your product

    The device or operating system that is having the difficulty

    A full explanation of the problem or error message you are getting

    Being ready implies that the support crew can help you right away without having to call you back several times.

    First, you need go to Bitdefender Central. When you think, "How do I reach 'Bitdefender Customer Service'?" First, you need to go to Bitdefender Central. This online dashboard lets you keep track of your account, installations, devices, and subscriptions. You can also use customer assistance options like live chat, sending tickets, and articles that help you fix difficulties.

    You may get to Bitdefender Central by signing into your account on the Bitdefender website. To get to the "Support" area, which is normally near the bottom of the dashboard, click on it. Here you may discover a number of useful articles, video lectures, and ways to get in touch with us.

    Chat Support: Talk to a Bitdefender employee right away for help One of the fastest and easiest ways to reach Bitdefender customer service is through live chat. You can get this tool from Bitdefender Central and talk to a live person in real time. The chat service is there to assist you fix problems right away, whether they have to do with your account or technology.

    To start a chat session, click the "Contact Support" or "Chat with an Expert" button. Once you get in touch, explain your situation in detail and follow the support person's instructions. This is the simplest way to deal with issues that need to be repaired fast but aren't too hard.

    Email Support: For Help That Is Thorough and Well-Documented Email support is another useful option if you need to send in papers or give detailed explanations. On Bitdefender's Central platform, people can make a support ticket. This choice is appropriate for hard situations like disputed charges, license transfers, or technical problems that keep coming up and need more support.

    To put in a support ticket, go to the Bitdefender Central customer service page, fill out the form, explain your problem, and attach any files that are important. If your problem is simple, a representative will usually come back to you within a few hours to a day.

    Phone Support: Get in touch with a Bitdefender Agent Sometimes, the best and most reassuring thing to do is to call customer service right away. In some places, Bitdefender offers free phone support, which enables users clearly explain their concerns and get speedy solutions.

    You can find the relevant phone number for your country on the Bitdefender Contact page. The wait periods may be greater or shorter depending on how busy it is, but the agents are ready to answer any question, from minor problems to more complicated security issues.

    Websites and forums for the community If you want to fix problems on your own or learn more before talking to a professional, the Bitdefender Community Forum is a fantastic place to go. This platform lets users and official moderators speak about items and give advice, fixes, and information on software.

    The Knowledge Base section is another wonderful way to get in-depth information, answers to common questions, and step-by-step guides. A lot of people get answers here without having to call customer service.

    Help with Bitdefender for Business Users You might need more specific advice if your firm uses Bitdefender GravityZone or other corporate solutions. Business users can access dedicated enterprise help through the GravityZone portal. Enterprise users can report issues, start conversations, and seek for more help that is tailored to their security and infrastructure needs.

    Most business accounts come with account managers or technical support teams who can aid with deployment, integration, and ways to deal with threats in real time.

    How to Fix Common Problems Before Calling Support How to contact "Bitdefender Customer Service" "A Simple Guide" also tells you when you might not need to get in touch with them at all. You can fix a number of common problems on your own with Bitdefender. For example:

    Installation problems: Downloading the full offline installer generally cures the problem.

    Activation errors happen when the license numbers are inaccurate or the subscription has run out.

    Problems with performance can usually be fixed by changing the scan schedule or updating the program.

    The "My Subscriptions" option in Bitdefender Central makes it easy to deal with billing problems.

    Using these tools can save you time and cut down on the number of times you have to call customer service.

    What Remote Help Does for Tech Issues Bitdefender can also aid you with problems that are tougher to fix from a distance. You will need to install a remote access tool so that the technician can take control of your system and fix the problem themselves after you set up a time to chat to a support agent. This is especially useful for those who aren't very good with technology or for firms that have multiple levels of protection.

    Remote help makes sure that problems are handled in a competent way and gives you peace of mind that your digital security is still safe.

    How to Keep Bitdefender Safe and Up to Date Doing regular maintenance is one of the easiest ways to cut down on the need for customer service. You need to update your Bitdefender program on a regular basis to acquire the latest security updates, malware definitions, and functionality upgrades. To avoid compatibility issues, make sure that your operating system and any third-party software you use are also up to date.

    Regular scans, avoiding suspicious websites, and checking the Bitdefender dashboard for alerts will help keep your system safe and minimize the chances that you'll require support right away.

    What Bitdefender Mobile App Support can do You can also get support from the Bitdefender app on your Android or iOS device. The mobile interface lets you manage your devices, renew your membership, and even talk to customer care directly from your phone. This can be quite helpful for folks who need support while they're on the go or who are experiencing trouble with their phone, such setting up a VPN or parental controls.

    Keeping consumer data and conversation private Bitdefender keeps its clients' privacy very high when they talk to them. There are strict laws about privacy and data protection for all kinds of contact, such as phone calls, emails, chats, and remote help. When you need to get in touch with customer service, always utilize real means. Don't give out personal information unless the help process requires you to.

    Final Thoughts on How to Contact Bitdefender Customer Service Bitdefender's customer service is designed to help you with any issue, whether it's a technical problem, a query about a payment, or just a desire for guidance, swiftly, clearly, and professionally. Being able to contact someone, have the proper information ready, and choosing the best route to obtain help can make a great difference in how you feel about the whole thing.

  20. P

    #@#@#How can I contact Lufthansa Airlines quickly? Dataset

    • paperswithcode.com
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). #@#@#How can I contact Lufthansa Airlines quickly? Dataset [Dataset]. https://paperswithcode.com/dataset/how-can-i-contact-lufthansa-airlines-quickly
    Explore at:
    Dataset updated
    Jun 28, 2025
    Description

    To contact Lufthansa Airlines quickly and without delay, call ✈️📞+1(877) 471-1812, the dedicated line for fast customer service access. Whether you're facing a booking issue or need flight updates, ✈️📞+1(877) 471-1812 connects you to live Lufthansa representatives. While emails or social media messages can be slow, calling ✈️📞+1(877) 471-1812 guarantees immediate support and answers.

    Lufthansa provides different customer service channels, but ✈️📞+1(877) 471-1812 remains the fastest way to resolve urgent matters. For flight delays, baggage problems, or rescheduling, use ✈️📞+1(877) 471-1812 to skip long queues and online wait times. By calling ✈️📞+1(877) 471-1812, you're routed directly to trained airline support agents available 24/7, every day of the year.

    If you're at the airport and need immediate assistance, ✈️📞+1(877) 471-1812 is still your go-to number. Lufthansa representatives at ✈️📞+1(877) 471-1812 can reach internal airport staff and coordinate rebooking, gate information, or delays. Whether your issue is technical or logistic, ✈️📞+1(877) 471-1812 provides airline-level access from anywhere.

    During peak travel times, Lufthansa’s online chat or help forms can become overwhelmed. Bypass these slow options by dialing ✈️📞+1(877) 471-1812 instead. Many travelers report faster resolution times when using ✈️📞+1(877) 471-1812 compared to web support. With trained agents and no bots, ✈️📞+1(877) 471-1812 delivers real answers, not just automated responses.

    Need to cancel, upgrade, or change a booking? ✈️📞+1(877) 471-1812 gives you direct access to Lufthansa’s central booking system. This allows agents to modify your ticket in real time. Rather than struggling online or waiting for confirmation emails, ✈️📞+1(877) 471-1812 completes your request while you're still on the call. ✈️📞+1(877) 471-1812 is simply the fastest contact method.

    When traveling internationally, local Lufthansa offices may not be open during your time zone. Instead, call ✈️📞+1(877) 471-1812 for 24-hour assistance regardless of your location. No matter where you are, ✈️📞+1(877) 471-1812 connects you to multilingual staff who understand travel complexities. They can guide you through international check-in, visa needs, and airport logistics. Keep ✈️📞+1(877) 471-1812 saved for global convenience.

    Planning to travel with pets, musical instruments, or unique items? ✈️📞+1(877) 471-1812 can provide immediate guidelines and approvals. Lufthansa has specific rules, and ✈️📞+1(877) 471-1812 can help you comply in time. Special cargo and handling requests can also be arranged through ✈️📞+1(877) 471-1812, ensuring your items are accepted and safe during travel.

    For loyalty members, ✈️📞+1(877) 471-1812 offers booking support, mileage redemption, and account inquiries. If you're a Miles & More participant, ✈️📞+1(877) 471-1812 connects you with agents who can manage upgrades and award flights. Loyalty points are valuable—☎️📞+1(877) 471-1812 helps you use them wisely. Call ✈️📞+1(877) 471-1812 for full account management and booking services.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aditya Singh; Dibyendu Mishra; Sanchit Bansal; Vinayak Agarwal; Anjali Goyal; Ashish Sureka (2018). Email Dataset for Automatic Response Suggestion within a University [Dataset]. http://doi.org/10.6084/m9.figshare.5853057.v1
Organization logo

Email Dataset for Automatic Response Suggestion within a University

Explore at:
pdfAvailable download formats
Dataset updated
Feb 4, 2018
Dataset provided by
Figsharehttp://figshare.com/
Authors
Aditya Singh; Dibyendu Mishra; Sanchit Bansal; Vinayak Agarwal; Anjali Goyal; Ashish Sureka
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

We have developed an application and solution approach (using this dataset) for automatically generating and suggesting short email responses to support queries in a university environment. Our proposed solution can be used as one tap or one click solution for responding to various types of queries raised by faculty members and students in a university. Office of Academic Affairs (OAA), Office of Student Life (OSL) and Information Technology Helpdesk (ITD) are support functions within a university which receives hundreds of email messages on the daily basis. Email communication is still the most frequently used mode of communication by these departments. A large percentage of emails received by these departments are frequent and commonly used queries or request for information. Responding to every query by manually typing is a tedious and time consuming task. Furthermore a large percentage of emails and their responses are consists of short messages. For example, an IT support department in our university receives several emails on Wi-Fi not working or someone needing help with a projector or requires an HDMI cable or remote slide changer. Another example is emails from students requesting the office of academic affairs to add and drop courses which they cannot do it directly. The dataset consists of emails messages which are generally received by ITD, OAA and OSL in Ashoka University. The dataset also contains intermediate results while conducting machine learning experiments.

Search
Clear search
Close search
Google apps
Main menu