Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This fileset contains a series of screenshots taken from our facebook advertising account. A few days ago we noticed that some negative "SEO" tactics, for lack of a better term, were having a negative impact on the performance of ads and fan engagement on the facebook page that we've been building.
I developed a custom software package, which utilizes nueural networks I've developed, to identify a target demographic, and suggest advertising content for said target demographic.
After a short training period we were able to create advertisemsents on facebook that averaged a cost of 0.01 cents per like. We also had a fan page engagement of nearly 4 times that of major brands like Wal-Mart.
Shortly after we began to obtain success we started noticing problems with our page. Since we have a stalker issue, we determined that the issues with our page were likely related to him.
We assued this because we had a disproportinately high number of spammy, negative, and inapporpriate comments on our posts. Offline harassment of our staff by the stalker also increased significantly during this time.
Curiously, we believe that the incident with the stalker allowed us to ascertain some interesting observations about Facebook's algorithims, which I've outlined below.
We believe, after reseraching this issue, that Facebook's algorithims suffer from the following issues:
They are easily gamed. We think that Facebook's algorithims are hypersensitive to negative comments being made on a post, and conversely likely positive ones as well. If a post is hidden, the comments are negative, or if a user interacts with the post negatively in some way, then Facebook's algorithims will "punish" your page.
We think that a series of scripted fake bot accounts would easily cause the issues that we've been expriencing.
As you can see from the data provided, over 90% of our likes come from paid facebook advertisement, therefore we do not have a significant number of fake accounts on our page brought in by third party advertising because we didn't do any of that.
Moreover, we did not send any of our fans obtained via mailing lists, or offline contact to our facebook page, those fans participate with us via email and/or through our private Google+ community.
So it is safe to say that our problems have not been caused by purchasing a large amount of fake likes from any third party vendor.
In addition, because our likes were gained very quickly, at a rate of about 2.5k likes a day, we do not believe that we have suffered from changes in the general demographic of our Facebook fan base over time.
Yet almost immediately after we started expericing trolling issues with our page, we also noticed a dip in the number of fans our posts were shown to by Facebook, and the performance of our ads began to go down, even though the content on our page had not changed.
We attributed this to holes in Facebook's algorithims, and potentially to the excessive use of fake bot accounts by Facebook itself.
We cannot prove the latter satement, but there have been similar reports before. Reference - http://www.forbes.com/sites/davidthier/2012/08/01/facebook-investigating-claims-that-80-of-ad-clicks-come-from-bots/
This article from Forbes outlines how one startup company repoted that up to 80% of their Facebook likes were fake bot accounts even though they paid for advertising directly through Facebook.
Our reserach suggests that Facebook's advertising platform functions as follows: - An advertiser pays for likes with Facebook, and the quality of the content on their page is initially assessed by those who are liking the page, but once the page obtains a following, we believe that the quality of the content is assessed by how many people like the posts on the page directly after they are posted.
If a post gets hidden, marked as spammed, skipped over, whatever, then we beleive that Facebook kicks that post out of the newsfeeds. If this happens to a significant number of posts on the page, then we believe that Facebook places the page on an advertising black-list.
Once on this black-list ads will begin to perform poorly, and content will drop out of newsfeeds causing even the most active page to go silent.
We tested this by posting pictures of attractive blond women, which with our demographic would have normally obtained a large number of likes and we struggled to get even 10 likes at over 20k page likes when we would have previosuly obtained almost 100 likes without boosting at only 5k page likes.
Why this probably isn't seen more often: In most cases this probably takes a while to occur as pages become old and fans grow bored, but in our case, because we have a stalker trolling our page with what appears to be hundres of scripted bot accounts, the effect was seen immediately.
Our data suggests that it became a tug of war between our stalker's army of fake bot accounts (making spammy comments, hiding our posts from newsfeeds, etc) and the real fans that actually like our page (who were voting our conent up - i.e. liking it, etc).
If you look at the graph of page likes in the figures provided - you can see that the darker purple are the fans we obtained via facebook advertising, well over 90%. We believe that the light purple (the "organic" fans) is mostly comprised of our stalker's fake drone accounts. We have less than 20 family members and friends liking our page, when we began this experiment we asked them not to interact with our page or the content.
In conclusion: We still have a lot more work to do, but it is highly likely that many Facebook likes are either scripted bots, and/or that Facebook's "weighting" algorithims are very suceptible to gaming via negative "SEO" tactics. Conversely, they are likely sensitive to gaming via positive "SEO" tactics as well.
Of course we cannot say for certain where the Facebook accounts that like a page come from without acess to their internal systems, but the evidence does strongly suggest that Facebook might be plagued with a large quantity of bot accounts, and that their algorithim has to be sensitive to actions from live users, so that the quality of the content can be easily ascertained. Otherwise it would be pretty easy for an advertiser to game Facebook's system by paying for, and getting, a large quantity of likes for content that is not appealing to any significant group of people.
Again we have to reiterate that we have no solid proof of this, but our data strongly suggests that this is the case.
We have reported the issues to Facebook, but interestingly, after we made it clear that we were going to analyze and investigate the issues with our page, we have been suddenly and incessently plagued with a never ending stream of "technical difficulties" related to our advertising account.
If you'd like to collaborate on this project, please feel free to email me at Jamie@ITSmoleculardesign.com.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The ICT Access Centres branded AccessTT, provide underserved or ICT-excluded communities with a world of opportunities through ICT devices and the internet. The AccessTT General Information is a list of AccessTT Centres completed and outfitted by Ministry of Digital Transformation (MDT). We invite visitors to 'Connect and Create' at each Centre, using the Centre's modern computer stations and printing facilities. Want to attend or facilitate a training session or virtual meeting? Explore possibilities to 'Educate and Innovate' in the training hubs at each location. Each Centre is managed by professional, friendly staff who reside within the community or environs to provide assistance with access to government services, online educational training resources and information about using digital technology. You can email mdt-corporatecommunications@gov.tt and join us at Facebook https://www.facebook.com/AccessTT to get more daily information on the AccessTT Centres.
Our tabular dataset offers comprehensive B2B contact information extracted from import and export trades designed to fuel lead generation efforts. With meticulous field-checking processes, our data is a reliable resource for businesses seeking to expand their networks and explore new trade opportunities.
Each entry in our dataset undergoes rigorous validation protocols to ensure accuracy and completeness. Our quality control measures include cross-referencing multiple sources, verifying contact details, and validating trade information against authoritative databases. Maintaining high data integrity standards guarantees that our clients receive actionable insights to drive their business strategies forward.
The dataset encompasses many industries, capturing import and export trades across diverse sectors and regions. Our dataset provides a panoramic view of global trade dynamics from manufacturing to technology, agriculture to healthcare. With detailed information on products, quantities, and trading partners, businesses can identify promising leads, forge strategic partnerships, and capitalize on emerging market trends.
Our dataset offers substantial coverage in terms of scale, encompassing millions of trade transactions and B2B contacts worldwide. Whether clients seek to explore new markets, source reliable suppliers, or connect with potential buyers, our dataset is a valuable asset for informed decision-making.
On the data marketplace, we offer flexible licensing options tailored to meet the diverse needs of our clients. Whether they require a subset of data for targeted campaigns or the entire dataset for comprehensive market analysis, we provide customizable solutions to accommodate varying requirements.
Our commitment to transparency and data privacy ensures that clients can confidently leverage our dataset, knowing that their information is handled with the utmost care and security. We adhere to stringent data protection regulations and industry best practices, safeguarding sensitive information and fostering trust among our clientele.
Our tabular dataset of import and export trades B2B contacts represents a goldmine of opportunities for businesses seeking to expand their global footprint. With unparalleled accuracy, breadth, and flexibility, it is a cornerstone for successful lead generation and strategic decision-making in today's dynamic marketplace.
Fields: - First Name - Last Name - Title - Company - Company Name for Emails - Email - Seniority - Departments - First Phone - Corporate Phone - Employees - Industry - Person Linkedin Url - Website - Company Linkedin Url - Facebook Url - City - State - Country - Company Address - Company City - Company State - Company Country - Company Phone - Technologies - Annual Revenue
The EmpatheticDialogues dataset is a large-scale multi-turn empathetic dialogue dataset collected on the Amazon Mechanical Turk, containing 24,850 one-to-one open-domain conversations. Each conversation was obtained by pairing two crowd-workers: a speaker and a listener. The speaker is asked to talk about the personal emotional feelings. The listener infers the underlying emotion through what the speaker says and responds empathetically. The dataset provides 32 evenly distributed emotion labels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CPI W: FB: Food: Food at Home (Home) data was reported at 238.261 1982-1984=100 in Jun 2018. This records a decrease from the previous number of 238.285 1982-1984=100 for May 2018. United States CPI W: FB: Food: Food at Home (Home) data is updated monthly, averaging 98.450 1982-1984=100 from Jan 1947 (Median) to Jun 2018, with 858 observations. The data reached an all-time high of 242.970 1982-1984=100 in Oct 2015 and a record low of 24.400 1982-1984=100 in Feb 1947. United States CPI W: FB: Food: Food at Home (Home) data remains active status in CEIC and is reported by Bureau of Labor Statistics. The data is categorized under Global Database’s USA – Table US.I012: Consumer Price Index: Urban Wage and Clerical Workers.
This statistic shows a ranking of the estimated number of Facebook users in 2020 in Africa, differentiated by country. The user numbers have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This fileset contains a series of screenshots taken from our facebook advertising account. A few days ago we noticed that some negative "SEO" tactics, for lack of a better term, were having a negative impact on the performance of ads and fan engagement on the facebook page that we've been building.
I developed a custom software package, which utilizes nueural networks I've developed, to identify a target demographic, and suggest advertising content for said target demographic.
After a short training period we were able to create advertisemsents on facebook that averaged a cost of 0.01 cents per like. We also had a fan page engagement of nearly 4 times that of major brands like Wal-Mart.
Shortly after we began to obtain success we started noticing problems with our page. Since we have a stalker issue, we determined that the issues with our page were likely related to him.
We assued this because we had a disproportinately high number of spammy, negative, and inapporpriate comments on our posts. Offline harassment of our staff by the stalker also increased significantly during this time.
Curiously, we believe that the incident with the stalker allowed us to ascertain some interesting observations about Facebook's algorithims, which I've outlined below.
We believe, after reseraching this issue, that Facebook's algorithims suffer from the following issues:
They are easily gamed. We think that Facebook's algorithims are hypersensitive to negative comments being made on a post, and conversely likely positive ones as well. If a post is hidden, the comments are negative, or if a user interacts with the post negatively in some way, then Facebook's algorithims will "punish" your page.
We think that a series of scripted fake bot accounts would easily cause the issues that we've been expriencing.
As you can see from the data provided, over 90% of our likes come from paid facebook advertisement, therefore we do not have a significant number of fake accounts on our page brought in by third party advertising because we didn't do any of that.
Moreover, we did not send any of our fans obtained via mailing lists, or offline contact to our facebook page, those fans participate with us via email and/or through our private Google+ community.
So it is safe to say that our problems have not been caused by purchasing a large amount of fake likes from any third party vendor.
In addition, because our likes were gained very quickly, at a rate of about 2.5k likes a day, we do not believe that we have suffered from changes in the general demographic of our Facebook fan base over time.
Yet almost immediately after we started expericing trolling issues with our page, we also noticed a dip in the number of fans our posts were shown to by Facebook, and the performance of our ads began to go down, even though the content on our page had not changed.
We attributed this to holes in Facebook's algorithims, and potentially to the excessive use of fake bot accounts by Facebook itself.
We cannot prove the latter satement, but there have been similar reports before. Reference - http://www.forbes.com/sites/davidthier/2012/08/01/facebook-investigating-claims-that-80-of-ad-clicks-come-from-bots/
This article from Forbes outlines how one startup company repoted that up to 80% of their Facebook likes were fake bot accounts even though they paid for advertising directly through Facebook.
Our reserach suggests that Facebook's advertising platform functions as follows: - An advertiser pays for likes with Facebook, and the quality of the content on their page is initially assessed by those who are liking the page, but once the page obtains a following, we believe that the quality of the content is assessed by how many people like the posts on the page directly after they are posted.
If a post gets hidden, marked as spammed, skipped over, whatever, then we beleive that Facebook kicks that post out of the newsfeeds. If this happens to a significant number of posts on the page, then we believe that Facebook places the page on an advertising black-list.
Once on this black-list ads will begin to perform poorly, and content will drop out of newsfeeds causing even the most active page to go silent.
We tested this by posting pictures of attractive blond women, which with our demographic would have normally obtained a large number of likes and we struggled to get even 10 likes at over 20k page likes when we would have previosuly obtained almost 100 likes without boosting at only 5k page likes.
Why this probably isn't seen more often: In most cases this probably takes a while to occur as pages become old and fans grow bored, but in our case, because we have a stalker trolling our page with what appears to be hundres of scripted bot accounts, the effect was seen immediately.
Our data suggests that it became a tug of war between our stalker's army of fake bot accounts (making spammy comments, hiding our posts from newsfeeds, etc) and the real fans that actually like our page (who were voting our conent up - i.e. liking it, etc).
If you look at the graph of page likes in the figures provided - you can see that the darker purple are the fans we obtained via facebook advertising, well over 90%. We believe that the light purple (the "organic" fans) is mostly comprised of our stalker's fake drone accounts. We have less than 20 family members and friends liking our page, when we began this experiment we asked them not to interact with our page or the content.
In conclusion: We still have a lot more work to do, but it is highly likely that many Facebook likes are either scripted bots, and/or that Facebook's "weighting" algorithims are very suceptible to gaming via negative "SEO" tactics. Conversely, they are likely sensitive to gaming via positive "SEO" tactics as well.
Of course we cannot say for certain where the Facebook accounts that like a page come from without acess to their internal systems, but the evidence does strongly suggest that Facebook might be plagued with a large quantity of bot accounts, and that their algorithim has to be sensitive to actions from live users, so that the quality of the content can be easily ascertained. Otherwise it would be pretty easy for an advertiser to game Facebook's system by paying for, and getting, a large quantity of likes for content that is not appealing to any significant group of people.
Again we have to reiterate that we have no solid proof of this, but our data strongly suggests that this is the case.
We have reported the issues to Facebook, but interestingly, after we made it clear that we were going to analyze and investigate the issues with our page, we have been suddenly and incessently plagued with a never ending stream of "technical difficulties" related to our advertising account.
If you'd like to collaborate on this project, please feel free to email me at Jamie@ITSmoleculardesign.com.