51 datasets found
  1. Alphabet: number of full-time employees 2007-2024

    • statista.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Alphabet: number of full-time employees 2007-2024 [Dataset]. https://www.statista.com/statistics/273744/number-of-full-time-google-employees/
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    At the end of 2024, Alphabet had 183,323 full-time employees. Up until 2015, these figures were reported as Google employees. The alphabet was created through a corporate restructuring of Google in October 2015 and became the parent company of Google as well as several of its former subsidiaries, including Calico, X, CapitalG and Sidewalk Labs. Google’s popularity Google is one of the most famous internet companies in the world, and in May 2024, the most visited multi-platform website in the United States, with over 278 million U.S. unique visitors during that month alone. The California-based multinational internet company has been delivering digital products and services since its creation in 1996. Due to the popularity of its search engine, the verb “to google” has entered the everyday language and the Oxford Dictionary. In addition to that, the company has also crafted itself as one of the most desirable employers, largely due to the many perks it offers in its offices worldwide. Some of the most appealing aspects of working for Google according to its employees include readily available foods and drinks, good working conditions, and ample communal spaces for relaxing, as well as many health benefits and generous salaries. Google offices and employees As of February 2022, Google and Alphabet had more than 70 offices in over 200 cities throughout 50 around the globe, including Germany, Czechia, Finland, Canada, Mexico, Turkey, and New Zealand. The company’s headquarters, also known as “the Googleplex,” are located in Mountain View, California, while other office locations in American states include New York, Georgia, Texas, Washington D.C., and Massachusetts. As Alphabet, the company employs a total over 182 thousand full-time staff, in addition to many other temporary and internship positions. Per the most recent diversity report published in July 2021, most Google employees were male and only 34 percent were female – a figure that has barely changed since the company started reporting on the diversity of its employees in 2016. Furthermore, as of 2021, women occupied only 28.1 percent of leadership positions and 24.6 percent of tech positions. Although Google has regularly stated that the company is committed to promoting ethnic diversity among its personnel, some 54.4 percent of its U.S. employees are White and only 3.3 percent of employees are Black.

  2. O

    Total public views of employee earnings assets

    • opendata.fcgov.com
    application/rdfxml +5
    Updated Jul 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IT Department (2024). Total public views of employee earnings assets [Dataset]. https://opendata.fcgov.com/High-Performing-Government/Total-public-views-of-employee-earnings-assets/f3mb-8akm
    Explore at:
    csv, application/rdfxml, xml, json, application/rssxml, tsvAvailable download formats
    Dataset updated
    Jul 14, 2024
    Dataset authored and provided by
    IT Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This is the summation over all time of weekly data from the Google Analytics tag for the Open Data Portal at OpenData.fcgov.com. The only datasets included here are those with titles matching 'Fort Collins City Employee Earnings'.

    Analytics shown are presumed to be non-City-employees, as these data come from computers external to the City network. Each day starting at the first day for which there are data is included, and the URL is either a specific page or "all", specifying that every page in the domain is included. Specific-page URLs are filtered to the main Portal page or data assets, so "all" may capture more pages than specified individually.

  3. Google's Diversity Annual Report Data

    • console.cloud.google.com
    Updated Mar 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:BigQuery%20Public%20Datasets%20Program&inv=1&invt=Ab2Vvw (2023). Google's Diversity Annual Report Data [Dataset]. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/google-diversity-annual-report
    Explore at:
    Dataset updated
    Mar 30, 2023
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Description

    This dataset contains current and historical demographic data on Google's workforce since the company began publishing diversity data in 2014. It includes data collected for government reporting and voluntary employee self-identification globally relating to hiring, retention, and representation categorized by race, gender, sexual orientation, gender identity, disability status, and military status. In some instances, the data is limited due to various government policies around the world and the desire to protect Googler confidentiality. All data in this dataset will be updated yearly upon publication of Google’s Diversity Annual Report . Google uses this data to inform its diversity, equity, and inclusion work. More information on our methodology can be found in the Diversity Annual Report. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  4. d

    Job Postings Dataset for Labour Market Research and Insights

    • datarade.ai
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2023). Job Postings Dataset for Labour Market Research and Insights [Dataset]. https://datarade.ai/data-products/job-postings-dataset-for-labour-market-research-and-insights-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Oxylabs
    Area covered
    Jamaica, Luxembourg, Kyrgyzstan, Sierra Leone, Anguilla, Togo, British Indian Ocean Territory, Zambia, Tajikistan, Switzerland
    Description

    Introducing Job Posting Datasets: Uncover labor market insights!

    Elevate your recruitment strategies, forecast future labor industry trends, and unearth investment opportunities with Job Posting Datasets.

    Job Posting Datasets Source:

    1. Indeed: Access datasets from Indeed, a leading employment website known for its comprehensive job listings.

    2. Glassdoor: Receive ready-to-use employee reviews, salary ranges, and job openings from Glassdoor.

    3. StackShare: Access StackShare datasets to make data-driven technology decisions.

    Job Posting Datasets provide meticulously acquired and parsed data, freeing you to focus on analysis. You'll receive clean, structured, ready-to-use job posting data, including job titles, company names, seniority levels, industries, locations, salaries, and employment types.

    Choose your preferred dataset delivery options for convenience:

    Receive datasets in various formats, including CSV, JSON, and more. Opt for storage solutions such as AWS S3, Google Cloud Storage, and more. Customize data delivery frequencies, whether one-time or per your agreed schedule.

    Why Choose Oxylabs Job Posting Datasets:

    1. Fresh and accurate data: Access clean and structured job posting datasets collected by our seasoned web scraping professionals, enabling you to dive into analysis.

    2. Time and resource savings: Focus on data analysis and your core business objectives while we efficiently handle the data extraction process cost-effectively.

    3. Customized solutions: Tailor our approach to your business needs, ensuring your goals are met.

    4. Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA best practices.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Effortlessly access fresh job posting data with Oxylabs Job Posting Datasets.

  5. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Canada, Bangladesh, Nepal, Taiwan, Tunisia, British Indian Ocean Territory, Isle of Man, Moldova (Republic of), Northern Mariana Islands, Andorra
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  6. H

    Talent & Employee Engagement - Raw Source Data

    • dataverse.harvard.edu
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diomar Anez; Dimar Anez (2025). Talent & Employee Engagement - Raw Source Data [Dataset]. http://doi.org/10.7910/DVN/RPNHQK
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Diomar Anez; Dimar Anez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains raw, unprocessed data files pertaining to the management tool group focused on 'Talent & Employee Engagement', including concepts like Employee Engagement Surveys/Systems and Corporate Codes of Ethics. The data originates from five distinct sources, each reflecting different facets of the tool's prominence and usage over time. Files preserve the original metrics and temporal granularity before any comparative normalization or harmonization. Data Sources & File Details: Google Trends File (Prefix: GT_): Metric: Relative Search Interest (RSI) Index (0-100 scale). Keywords Used: "corporate code of ethics" + "employee engagement" + "employee engagement management" Time Period: January 2004 - January 2025 (Native Monthly Resolution). Scope: Global Web Search, broad categorization. Extraction Date: Data extracted January 2025. Notes: Index relative to peak interest within the period for these terms. Reflects public/professional search interest trends. Based on probabilistic sampling. Source URL: Google Trends Query Google Books Ngram Viewer File (Prefix: GB_): Metric: Annual Relative Frequency (% of total n-grams in the corpus). Keywords Used: Corporate Code of Ethics+Employee Engagement Programs+Employee Engagement Surveys+Employee Engagement Time Period: 1950 - 2022 (Annual Resolution). Corpus: English. Parameters: Case Insensitive OFF, Smoothing 0. Extraction Date: Data extracted January 2025. Notes: Reflects term usage frequency in Google's digitized book corpus. Subject to corpus limitations (English bias, coverage). Source URL: Ngram Viewer Query Crossref.org File (Prefix: CR_): Metric: Absolute count of publications per month matching keywords. Keywords Used: ("corporate code of ethics" OR "employee engagement" OR "employee engagement programs" OR "employee engagement surveys") AND ("human resources" OR "management" OR "organizational" OR "culture" OR "development" OR "performance") Time Period: 1950 - 2025 (Queried for monthly counts based on publication date metadata). Search Fields: Title, Abstract. Extraction Date: Data extracted January 2025. Notes: Reflects volume of relevant academic publications indexed by Crossref. Deduplicated using DOIs; records without DOIs omitted. Source URL: Crossref Search Query Bain & Co. Survey - Usability File (Prefix: BU_): Metric: Original Percentage (%) of executives reporting tool usage. Tool Names/Years Included: Corporate Code of Ethics (2002); Employee Engagement Surveys (2012, 2014); Employee Engagement Systems (2017, 2022). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., Ronan C. et al., various years: 2003, 2013, 2015, 2017, 2023). Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 2002/708; 2012/1208; 2014/1067; 2017/1268; 2022/1068. Bain & Co. Survey - Satisfaction File (Prefix: BS_): Metric: Original Average Satisfaction Score (Scale 0-5). Tool Names/Years Included: Corporate Code of Ethics (2002); Employee Engagement Surveys (2012, 2014); Employee Engagement Systems (2017, 2022). Respondent Profile: CEOs, CFOs, COOs, other senior leaders; global, multi-sector. Source: Bain & Company Management Tools & Trends publications (Rigby D., Bilodeau B., Ronan C. et al., various years: 2003, 2013, 2015, 2017, 2023). Data Compilation Period: July 2024 - January 2025. Notes: Data points correspond to specific survey years. Sample sizes: 2002/708; 2012/1208; 2014/1067; 2017/1268; 2022/1068. Reflects subjective executive perception of utility. File Naming Convention: Files generally follow the pattern: PREFIX_Tool.csv, where the PREFIX indicates the data source: GT_: Google Trends GB_: Google Books Ngram CR_: Crossref.org (Count Data for this Raw Dataset) BU_: Bain & Company Survey (Usability) BS_: Bain & Company Survey (Satisfaction) The essential identification comes from the PREFIX and the Tool Name segment. This dataset resides within the 'Management Tool Source Data (Raw Extracts)' Dataverse.

  7. Data from: Quarterly Census of Employment and Wages

    • console.cloud.google.com
    Updated Apr 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:U.S.%20Bureau%20of%20Labor%20Statistics&hl=pl&inv=1&invt=Ab3wOQ (2023). Quarterly Census of Employment and Wages [Dataset]. https://console.cloud.google.com/marketplace/product/bls-public-data/qcew?hl=pl
    Explore at:
    Dataset updated
    Apr 8, 2023
    Dataset provided by
    Googlehttp://google.com/
    Description

    The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of employment and wages reported by employers covering more than 95 percent of U.S. jobs, available at the county, MSA, state and national levels by industry. The dataset, hosted as part of the Cloud Public Datasets Program , gives county-level information on jobs and wages each quarter starting in 1990. The counties are identified by geoid which can easily be joined with both all FIPS codes or US county boundaries to unlock new insights within the data. Both of these datasets are available in BigQuery through the Cloud Public Datasets Cleaning and onboarding support for this dataset is provided by CARTO . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  8. d

    LinkedIn Job Postings Data – U.S Skills & Employer Trends • Enriched...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc., LinkedIn Job Postings Data – U.S Skills & Employer Trends • Enriched LinkedIn Job Postings Data Matchable with LinkedIn Company Data & Google Maps [Dataset]. https://datarade.ai/data-products/canaria-s-linkedin-job-posting-analytics-ai-llm-enhanced-i-canaria-inc
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    United States
    Description

    LinkedIn Job Postings Data - Comprehensive Professional Intelligence for HR Strategy & Market Research

    LinkedIn Job Postings Data represents the most comprehensive professional intelligence dataset available, delivering structured insights across millions of LinkedIn job postings, LinkedIn job listings, and LinkedIn career opportunities. Canaria's enriched LinkedIn Job Postings Data transforms raw LinkedIn job market information into actionable business intelligence—normalized, deduplicated, and enhanced with AI-powered enrichment for deep workforce analytics, talent acquisition, and market research.

    This premium LinkedIn job postings dataset is engineered to help HR professionals, recruiters, analysts, and business strategists answer mission-critical questions: • What LinkedIn job opportunities are available in target companies? • Which skills are trending in LinkedIn job postings across specific industries? • How are companies advertising their LinkedIn career opportunities? • What are the salary expectations across different LinkedIn job listings and regions?

    With real-time updates and comprehensive LinkedIn job posting enrichment, our data provides unparalleled visibility into LinkedIn job market trends, hiring patterns, and workforce dynamics.

    Use Cases: What This LinkedIn Job Postings Data Solves

    Our dataset transforms LinkedIn job advertisements, market information, and career listings into structured, analyzable insights—powering everything from talent acquisition to competitive intelligence and job market research.

    Talent Acquisition & LinkedIn Recruiting Intelligence • LinkedIn job market mapping • LinkedIn career opportunity intelligence • LinkedIn job posting competitive analysis • LinkedIn job skills gap identification

    HR Strategy & Workforce Analytics • Organizational network analysis • Employee mobility tracking • Compensation benchmarking • Diversity & inclusion analytics • Workforce planning intelligence • Skills evolution monitoring

    Market Research & Competitive Intelligence • Company growth analysis • Industry trend identification • Competitive talent mapping • Market entry intelligence • Partnership & business development • Investment due diligence

    LinkedIn Job Market Research & Economic Analysis • Regional LinkedIn job analysis • LinkedIn job skills demand forecasting • LinkedIn job economic impact assessment • LinkedIn job education-industry alignment • LinkedIn remote job trend analysis • LinkedIn career development ROI

    What Makes This LinkedIn Job Postings Data Unique

    AI-Enhanced LinkedIn Job Intelligence • LinkedIn job posting enrichment with advanced NLP • LinkedIn job seniority classification • LinkedIn job industry expertise mapping • LinkedIn job career progression modeling

    Comprehensive LinkedIn Job Market Intelligence • Real-time LinkedIn job postings with salary, requirements, and company insights • LinkedIn recruiting activity tracking • LinkedIn job application analytics • LinkedIn job skills demand analysis • LinkedIn compensation intelligence

    Company & Organizational Intelligence • Company growth indicators • Cultural & values intelligence • Competitive positioning

    LinkedIn Job Data Quality & Normalization • Advanced LinkedIn job deduplication • LinkedIn job skills taxonomy standardization • LinkedIn job geographic normalization • LinkedIn job company matching • LinkedIn job education standardization

    Who Uses Canaria's LinkedIn Data

    HR & Talent Acquisition Teams • Optimize recruiting pipelines • Benchmark compensation • Identify talent pools • Develop data-driven hiring strategies

    Market Research & Intelligence Analysts • Track industry trends • Build competitive intelligence models • Analyze workforce dynamics

    HR Technology & Analytics Platforms • Power recruiting tools and analytics solutions • Fuel compensation engines and dashboards

    Academic & Economic Researchers • Study labor market dynamics • Analyze career mobility trends • Research professional development

    Government & Policy Organizations • Evaluate workforce development programs • Monitor skills gaps • Inform economic initiatives

    Summary

    Canaria's LinkedIn Job Postings Data delivers the most comprehensive LinkedIn job market intelligence available. It combines job posting insights, recruiting intelligence, and organizational data in one unified dataset. With AI-enhanced enrichment, real-time updates, and enterprise-grade data quality, it supports advanced HR analytics, talent acquisition, job market research, and competitive intelligence.

    About Canaria Inc. Canaria Inc. is a leader in alternative data, specializing in job market intelligence, LinkedIn company data, Glassdoor salary analytics, and Google Maps location insights. We deliver clean, structured, and enriched datasets at scale using proprietary data scraping pipelines and advanced AI/LLM-based modeling, all backed by human validation. Our platform also includes Google Maps data, providing verified business location intelligen...

  9. u

    Landsat - Annual (Google Earth Engine - Landsat 8) - 6 - Catalogue -...

    • beta.data.urbandatacentre.ca
    • data.urbandatacentre.ca
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Landsat - Annual (Google Earth Engine - Landsat 8) - 6 - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://beta.data.urbandatacentre.ca/dataset/landsat-annual-google-earth-engine-landsat-8-6
    Explore at:
    Dataset updated
    Sep 18, 2023
    Description

    Top of Atmosphere (TOA) reflectance data in bands from the USGS Landsat 5 and Landsat 8 satellites were accessed via Google Earth Engine. CANUE staff used Google Earth Engine functions to create cloud free annual composites, and mask water features, then export the resulting band data. NDVI indices were calculated as (band 4 - Band 3)/(Band 4 Band 3) for Landsat 5 data, and as (band 5 - band 4)/(band 5 Band 4) for Landsat 8 data. These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. No data were available for 2012, due to decommissioning of Landsat 5 in 2011 prior to the start of Landsat 8 in 2013. No cross-calibration between the sensors was performed, please be aware there may be small bias differences between NDVI values calculated using Landsat 5 and Landsat 8. Final NDVI metrics were linked to all 6-digit DMTI Spatial single link postal code locations in Canada, and for surrounding areas within 100m, 250m, 500m, and 1km.

  10. s

    Fostering cultures of open qualitative research: Dataset 2 – Interview...

    • orda.shef.ac.uk
    xlsx
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2023). Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts [Dataset]. http://doi.org/10.15131/shef.data.23567223.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute. The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 of Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021. This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license. Overall, this dataset comprises:

    · 15 x Interview transcripts - in .docx file format which can be opened with Microsoft Word, Google Doc, or an open-source equivalent.

    All participants have read and approved their transcripts and have had an opportunity to retract details should they wish to do so.

    Participants chose whether to be pseudonymised or named directly. The pseudonym can be used to identify individual participant responses in the qualitative coding held within the ‘Fostering cultures of open qualitative research: Dataset 3 – Coding Book’ files.

    For recruitment, 14 x participants we selected based on their responses to the project survey., whilst one participant was recruited based on specific expertise.

    · 1 x Participant sheet – in .csv format which may by opened with Microsoft Excel, Google Sheet, or an open-source equivalent.

    The provides socio-demographic detail on each participant alongside their main field of research and career stage. It includes a RespondentID field/column which can be used to connect interview participants with their responses to the survey questions in the accompanying ‘Fostering cultures of open qualitative research: Dataset 1 – Survey Responses’ files.

    The project was undertaken by two staff:

    Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk Postdoctoral Research Assistant Labelled as ‘Researcher 1’ throughout the dataset

    Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science Labelled as ‘Researcher 2’ throughout the dataset

  11. American Community Survey (ACS)

    • console.cloud.google.com
    Updated Jul 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&inv=1&invt=Abyneg (2018). American Community Survey (ACS) [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/acs
    Explore at:
    Dataset updated
    Jul 16, 2018
    Dataset provided by
    Googlehttp://google.com/
    Description

    The American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  12. u

    Data from: Inventory of online public databases and repositories holding...

    • agdatacommons.nal.usda.gov
    • s.cnmilf.com
    • +4more
    txt
    Updated Feb 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin Antognoli; Jonathan Sears; Cynthia Parr (2024). Inventory of online public databases and repositories holding agricultural data in 2017 [Dataset]. http://doi.org/10.15482/USDA.ADC/1389839
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    Ag Data Commons
    Authors
    Erin Antognoli; Jonathan Sears; Cynthia Parr
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to

    establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data

    Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered.
    Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review:

    Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection.
    Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation.

    See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt

  13. T

    civil_comments

    • tensorflow.org
    • huggingface.co
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). civil_comments [Dataset]. https://www.tensorflow.org/datasets/catalog/civil_comments
    Explore at:
    Dataset updated
    Feb 28, 2023
    Description

    This version of the CivilComments Dataset provides access to the primary seven labels that were annotated by crowd workers, the toxicity and other tags are a value between 0 and 1 indicating the fraction of annotators that assigned these attributes to the comment text.

    The other tags are only available for a fraction of the input examples. They are currently ignored for the main dataset; the CivilCommentsIdentities set includes those labels, but only consists of the subset of the data with them. The other attributes that were part of the original CivilComments release are included only in the raw data. See the Kaggle documentation for more details about the available features.

    The comments in this dataset come from an archive of the Civil Comments platform, a commenting plugin for independent news sites. These public comments were created from 2015 - 2017 and appeared on approximately 50 English-language news sites across the world. When Civil Comments shut down in 2017, they chose to make the public comments available in a lasting open archive to enable future research. The original data, published on figshare, includes the public comment text, some associated metadata such as article IDs, publication IDs, timestamps and commenter-generated "civility" labels, but does not include user ids. Jigsaw extended this dataset by adding additional labels for toxicity, identity mentions, as well as covert offensiveness. This data set is an exact replica of the data released for the Jigsaw Unintended Bias in Toxicity Classification Kaggle challenge. This dataset is released under CC0, as is the underlying comment text.

    For comments that have a parent_id also in the civil comments data, the text of the previous comment is provided as the "parent_text" feature. Note that the splits were made without regard to this information, so using previous comments may leak some information. The annotators did not have access to the parent text when making the labels.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('civil_comments', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  14. E

    Dataset for training classifiers of comparative sentences

    • live.european-language-grid.eu
    • explore.openaire.eu
    • +1more
    csv
    Updated Apr 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Dataset for training classifiers of comparative sentences [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7607
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 19, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As there was no large publicly available cross-domain dataset for comparative argument mining, we create one composed of sentences, potentially annotated with BETTER / WORSE markers (the first object is better / worse than the second object) or NONE (the sentence does not contain a comparison of the target objects). The BETTER sentences stand for a pro-argument in favor of the first compared object and WORSE-sentences represent a con-argument and favor the second object. We aim for minimizing dataset domain-specific biases in order to capture the nature of comparison and not the nature of the particular domains, thus decided to control the specificity of domains by the selection of comparison targets. We hypothesized and could confirm in preliminary experiments that comparison targets usually have a common hypernym (i.e., are instances of the same class), which we utilized for selection of the compared objects pairs. The most specific domain we choose, is computer science with comparison targets like programming languages, database products and technology standards such as Bluetooth or Ethernet. Many computer science concepts can be compared objectively (e.g., on transmission speed or suitability for certain applications). The objects for this domain were manually extracted from List of-articles at Wikipedia. In the annotation process, annotators were asked to only label sentences from this domain if they had some basic knowledge in computer science. The second, broader domain is brands. It contains objects of different types (e.g., cars, electronics, and food). As brands are present in everyday life, anyone should be able to label the majority of sentences containing well-known brands such as Coca-Cola or Mercedes. Again, targets for this domain were manually extracted from `List of''-articles at Wikipedia.The third domain is not restricted to any topic: random. For each of 24~randomly selected seed words 10 similar words were collected based on the distributional similarity API of JoBimText (http://www.jobimtext.org). Seed words created using randomlists.com: book, car, carpenter, cellphone, Christmas, coffee, cork, Florida, hamster, hiking, Hoover, Metallica, NBC, Netflix, ninja, pencil, salad, soccer, Starbucks, sword, Tolkien, wine, wood, XBox, Yale.Especially for brands and computer science, the resulting object lists were large (4493 in brands and 1339 in computer science). In a manual inspection, low-frequency and ambiguous objects were removed from all object lists (e.g., RAID (a hardware concept) and Unity (a game engine) are also regularly used nouns). The remaining objects were combined to pairs. For each object type (seed Wikipedia list page or the seed word), all possible combinations were created. These pairs were then used to find sentences containing both objects. The aforementioned approaches to selecting compared objects pairs tend minimize inclusion of the domain specific data, but do not solve the problem fully though. We keep open a question of extending dataset with diverse object pairs including abstract concepts for future work. As for the sentence mining, we used the publicly available index of dependency-parsed sentences from the Common Crawl corpus containing over 14 billion English sentences filtered for duplicates. This index was queried for sentences containing both objects of each pair. For 90% of the pairs, we also added comparative cue words (better, easier, faster, nicer, wiser, cooler, decent, safer, superior, solid, terrific, worse, harder, slower, poorly, uglier, poorer, lousy, nastier, inferior, mediocre) to the query in order to bias the selection towards comparisons but at the same time admit comparisons that do not contain any of the anticipated cues. This was necessary as a random sampling would have resulted in only a very tiny fraction of comparisons. Note that even sentences containing a cue word do not necessarily express a comparison between the desired targets (dog vs. cat: He's the best pet that you can get, better than a dog or cat.). It is thus especially crucial to enable a classifier to learn not to rely on the existence of clue words only (very likely in a random sample of sentences with very few comparisons). For our corpus, we keep pairs with at least 100 retrieved sentences.From all sentences of those pairs, 2500 for each category were randomly sampled as candidates for a crowdsourced annotation that we conducted on figure-eight.com in several small batches. Each sentence was annotated by at least five trusted workers. We ranked annotations by confidence, which is the figure-eight internal measure of combining annotator trust and voting, and discarded annotations with a confidence below 50%. Of all annotated items, 71% received unanimous votes and for over 85% at least 4 out of 5 workers agreed -- rendering the collection procedure aimed at ease of annotation successful.The final dataset contains 7199 sentences with 271 distinct object pairs. The majority of sentences (over 72%) are non-comparative despite biasing the selection with cue words; in 70% of the comparative sentences, the favored target is named first.You can browse though the data here: https://docs.google.com/spreadsheets/d/1U8i6EU9GUKmHdPnfwXEuBxi0h3aiRCLPRC-3c9ROiOE/edit?usp=sharing Full description of the dataset is available in the workshop paper at ACL 2019 conference. Please cite this paper if you use the data: Franzek, Mirco, Alexander Panchenko, and Chris Biemann. ""Categorization of Comparative Sentences for Argument Mining."" arXiv preprint arXiv:1809.06152 (2018).@inproceedings{franzek2018categorization, title={Categorization of Comparative Sentences for Argument Mining}, author={Panchenko, Alexander and Bondarenko, and Franzek, Mirco and Hagen, Matthias and Biemann, Chris}, booktitle={Proceedings of the 6th Workshop on Argument Mining at ACL'2019}, year={2019}, address={Florence, Italy}}

  15. Data from: News on ethical business behaviour and information on ESGC in...

    • zenodo.org
    • investigacion.ubu.es
    • +2more
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dolores Lagoa-Varela; Dolores Lagoa-Varela; Paula Antón-Maraña; Paula Antón-Maraña (2025). News on ethical business behaviour and information on ESGC in European countries [Dataset]. http://doi.org/10.5281/zenodo.14747435
    Explore at:
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dolores Lagoa-Varela; Dolores Lagoa-Varela; Paula Antón-Maraña; Paula Antón-Maraña
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Access only for peer review. The dataset will be opened when the paper is accepted in a journal.

    This is the dataset used in the research conducted as part of the study titled "BRIDGING ESG RATINGS AND MEDIA ANALYSIS: A DUAL AI APPROACH TO CORPORATE ETHICS", which collects 44,315 news items related to business ethics behaviours of 1,474 European companies that have information on the ESG Controversies (ESGC) index of Thomson Reuters Eikon for at least 4 years of the time horizon from 2017 to 2023.

    The following table shows the variables contained in the dataset for each of the news items extracted from Google News.

    Data

    Type

    Source

    Date

    Date posting

    Google News API

    Title

    Headline text

    Google News API

    Snippet

    Caption text

    Google News API

    Source

    Newspaper, website, blog

    Google News API

    Link

    URL of the news item

    Google News API

    Company Name

    Name of the company

    Thomson Reuters Eikon

    ESGC score

    From 0 to 100 points

    Thomson Reuters Eikon

    ESGC rank

    A, B, C or D ranks

    Thomson Reuters Eikon

    Country

    Name of European countries

    Thomson Reuters Eikon

    Employees

    Number of employees

    Thomson Reuters Eikon

    Turnover

    Total revenue in the last year

    Thomson Reuters Eikon

    Industry sector

    Name of the industrial sector in which the company operates

    Thomson Reuters Eikon
  16. W

    Workforce Analytics Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Workforce Analytics Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/workforce-analytics-industry-11591
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Workforce Analytics Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 15.64% during the forecast period.Workforce analytics is the collection, analysis, and interpretation of data regarding an organization's workforce in order to make better decisions and optimize human capital. Advanced analytics techniques can be used by organizations to provide valuable insights into employee performance, engagement, productivity, and other key metrics.Workforce analytics helps the organization make fact-based decisions while acquiring, retaining, developing, and compensating talent. Then the patterns that could be applied to predict future workforce needs would help solve potential problems before they arise and optimize usage from historical data analysis. Workforce analytics further allows an organization to find potential talent, measure the ROI of training programs, and assess the effectiveness of the organizational change initiatives.Using the power of workforce analytics, organizations can make their workforce much more connected, productive, and effective in conducting businesses successfully. Recent developments include: September 2022: ActivTrak partnered with Google Workspace to provide personal work insights that enable employees to improve their digital work habits and wellness. Customers can embed individual work metrics into their Google Workspace applications with ActivTrak for Google Workspace, giving employees immediate visibility to help them redesign their workday, protect focus time, and improve well-being., August 2022: ADP has launched Intelligent Self-Service, which assists employees with common issues before they need to contact their HR department for assistance. Based on an analysis of data from across ADP's ecosystem, the product employs predictive analytics and machine learning to predict which issues may arise.. Key drivers for this market are: Increasing Need to Make a Smarter a Decision About the Talent, Increasing Data in HR Departments related to Pay rolls, Recruitment. Potential restraints include: Lack of Awareness About Workforce Analytics. Notable trends are: Performance Monitoring Offers Potential Growth.

  17. d

    LinkedIn Company Data – US Business Profiles with Google Maps Validation...

    • datarade.ai
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc. (2025). LinkedIn Company Data – US Business Profiles with Google Maps Validation LinkedIn Company Data for BI, Company Analysis & Portfolio Monitoring [Dataset]. https://datarade.ai/data-products/canaria-company-data-us-300000-unique-companies-2-ye-canaria-inc
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txt, .parquetAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    United States
    Description

    LinkedIn Company Data for Company Analysis, Valuation & Portfolio Strategy LinkedIn company data is one of the most powerful forms of alternative data for understanding company behavior, firmographics, business dynamics, and real-time hiring signals. Canaria’s enriched LinkedIn company data provides detailed company profiles, including hiring activity, job postings, employee trends, headquarters and branch locations, and verified metadata from Google Maps. This LinkedIn corporate data is updated weekly and optimized for use in company analysis, startup scouting, private company valuation, and investment monitoring. It supports BI dashboards, risk models, CRM enrichment, and portfolio strategy.

    Use Cases: What Problems This LinkedIn Data Solves Our LinkedIn company insights transform opaque business landscapes into structured, analyzable data. Whether you’re conducting M&A due diligence, tracking high-growth companies, or benchmarking performance, this dataset empowers fast, confident decisions.

    Company Analysis • Identify a company’s size, industry classification, and headcount signals using LinkedIn firmographic data • Analyze social presence through LinkedIn follower metrics and employee engagement • Understand geographic expansion through branch locations and hiring distribution • Benchmark companies using LinkedIn profile activity and job posting history • Monitor business changes with real-time LinkedIn updates

    Company Valuation & Financial Benchmarking • Feed LinkedIn-based firmographics into comps and financial models • Use hiring velocity from LinkedIn job data as a proxy for business growth • Strengthen private market intelligence with verified non-financial signals • Validate scale, structure, and presence via LinkedIn and Google Maps footprint

    Company Risk Analysis • Detect red flags using hiring freezes or drop in profile activity • Spot market shifts through location downsizing or organizational changes • Identify distressed companies with decreased LinkedIn job posting frequency • Compare stated presence vs. active behavior to identify risk anomalies

    Business Intelligence (BI) & Strategic Planning • Segment companies by industry, headcount, growth behavior, and hiring activity • Build BI dashboards integrating LinkedIn job trends and firmographic segmentation • Identify geographic hiring hotspots using Maps and LinkedIn signal overlays • Track job creation, title distribution, and skill demand in near real-time • Export filtered LinkedIn corporate data into CRMs, analytics tools, and lead scoring systems

    Portfolio Management & Investment Monitoring • Enhance portfolio tracking with LinkedIn hiring data and firmographic enrichment • Spot hiring surges, geographic expansions, or restructuring in real-time • Correlate LinkedIn growth indicators with strategic outcomes • Analyze competitors and targets using historical and real-time LinkedIn data • Generate alerts for high-impact company changes in your portfolio universe

    What Makes This LinkedIn Company Data Unique

    Includes Real-Time Hiring Signals • Gain visibility into which companies are hiring, at what scale, and for which roles using enriched LinkedIn job data

    Verified Location Intelligence • Confirm branch and HQ locations with Google Maps coordinates and public company metadata

    Weekly Updates • Stay ahead of the market with fresh, continuously updated LinkedIn company insights

    Clean & Analysis-Ready Format • Structured, deduplicated, and taxonomy-mapped data that integrates with CRMs, BI platforms, and investment models

    Who Benefits from LinkedIn Company Data • Hedge funds, VCs, and PE firms analyzing startup and private company activity • Portfolio managers and financial analysts tracking operational shifts • Market research firms modeling sector momentum and firmographics • Strategy teams calculating market size using LinkedIn company footprints • BI and analytics teams building company-level dashboards • Compliance and KYC teams enriching company identity records • Corp dev teams scouting LinkedIn acquisition targets and expansion signals

    Summary Canaria’s LinkedIn company data delivers high-frequency, high-quality insights into U.S. companies, combining job posting trends, location data, and firmographic intelligence. With real-time updates and structured delivery formats, this alternative dataset enables powerful workflows across company analysis, financial modeling, investment research, market segmentation, and business strategy.

    About Canaria Inc. Canaria Inc. is a leader in alternative data, specializing in job market intelligence, LinkedIn company data, and Glassdoor salary analytics. We deliver clean, structured, and enriched datasets at scale using proprietary data scraping pipelines and advanced AI/LLM-based modeling, all backed by human validation. Our AI-powered pipeline is developed by a seasoned team of machine learning experts from Google, Meta, and Amazon, and by alumni of Stanford, Caltech, and Columbia ...

  18. u

    Land Surface Temperature (Google Earth Engine land surface temperature code)...

    • data.urbandatacentre.ca
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Land Surface Temperature (Google Earth Engine land surface temperature code) - 3 - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/land-surface-temperature-google-earth-engine-land-surface-temperature-code-3
    Explore at:
    Dataset updated
    Sep 18, 2023
    Description

    CANUE staff developed annual estimates of maximum mean warm-season land surface temperature (LST) recorded by LandSat 8 at 30m resolution. To reduce the effect of missing data/cloud cover/shadows, the highest mean warm-season value reported over three years was retained - for example, the data for 2021 represent the maximum of the mean land surface temperature at a pixel location between April 1st and September 30th in 2019, 2020 and 2021. Land surface temperature was calculated in Google Earth Engine, using a public algorithm (see supplementary documentation). In general, annual mean LST may not reflect ambient air temperatures experienced by individuals at any given time, but does identify areas that are hotter during the day and therefore more likely to radiate excess heat at night - both factors that contribute to heat islands within urban areas.

  19. d

    2015 Street Tree Census - Tree Data

    • catalog.data.gov
    • data.cityofnewyork.us
    • +4more
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2015 Street Tree Census - Tree Data [Dataset]. https://catalog.data.gov/dataset/2015-street-tree-census-tree-data-a16a1
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Street tree data from the TreesCount! 2015 Street Tree Census, conducted by volunteers and staff organized by NYC Parks & Recreation and partner organizations. Tree data collected includes tree species, diameter and perception of health. Accompanying blockface data is available indicating status of data collection and data release citywide. The 2015 tree census was the third decadal street tree census and largest citizen science initiative in NYC Parks’ history. Data collection ran from May 2015 to October 2016 and the results of the census show that there are 666,134 trees planted along NYC's streets. The data collected as part of the census represents a snapshot in time of trees under NYC Parks' jurisdiction. The census data formed the basis of our operational database, the Forestry Management System (ForMS) which is used daily by our foresters and other staff for inventory and asset management: https://data.cityofnewyork.us/browse?sortBy=most_accessed&utf8=%E2%9C%93&Data-Collection_Data-Collection=Forestry+Management+System+%28ForMS%29 To learn more about the data collected and managed in ForMS, please refer to this user guide: https://docs.google.com/document/d/1PVPWFi-WExkG3rvnagQDoBbqfsGzxCKNmR6n678nUeU/edit. For information on the city's current tree population, use the ForMS datasets.

  20. W

    Workforce Analytics Industry Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Workforce Analytics Industry Report [Dataset]. https://www.marketreportanalytics.com/reports/workforce-analytics-industry-88010
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Workforce Analytics market is experiencing robust growth, fueled by the increasing need for organizations to optimize workforce performance, enhance employee engagement, and improve strategic decision-making. With a Compound Annual Growth Rate (CAGR) of 15.64% from 2019 to 2024, the market is projected to continue its upward trajectory, driven by factors such as the rising adoption of cloud-based solutions, the growing importance of data-driven insights in HR, and the increasing demand for talent optimization strategies. The market segmentation reveals a diverse landscape, with solutions encompassing talent acquisition, payroll, and performance monitoring; professional, managed, and cloud-based service delivery models; and a broad range of end-user industries including BFSI, manufacturing, IT & Telecom, healthcare, and retail. Large enterprises currently dominate the market share, but the increasing adoption of affordable and accessible solutions is driving growth amongst SMEs. Leading vendors like ADP, IBM, Oracle, and Workday are heavily invested in innovation and expansion, further contributing to the market's dynamic nature. The competitive landscape is characterized by both established players and emerging innovative companies. The market's future hinges on several key factors, including advancements in artificial intelligence (AI) and machine learning (ML) for predictive analytics, the integration of workforce analytics with other HR technologies, and the growing focus on data privacy and security. Addressing these factors will be crucial for sustained growth. Continued expansion into emerging economies and the increasing focus on improving employee experience through data-driven insights will also be major drivers shaping the future of this sector. The development of more sophisticated analytical tools capable of providing actionable insights will also play a significant role in shaping the market's future. Recent developments include: September 2022: ActivTrak partnered with Google Workspace to provide personal work insights that enable employees to improve their digital work habits and wellness. Customers can embed individual work metrics into their Google Workspace applications with ActivTrak for Google Workspace, giving employees immediate visibility to help them redesign their workday, protect focus time, and improve well-being., August 2022: ADP has launched Intelligent Self-Service, which assists employees with common issues before they need to contact their HR department for assistance. Based on an analysis of data from across ADP's ecosystem, the product employs predictive analytics and machine learning to predict which issues may arise.. Key drivers for this market are: Increasing Need to Make a Smarter a Decision About the Talent, Increasing Data in HR Departments related to Pay rolls, Recruitment. Potential restraints include: Increasing Need to Make a Smarter a Decision About the Talent, Increasing Data in HR Departments related to Pay rolls, Recruitment. Notable trends are: Performance Monitoring Offers Potential Growth.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Alphabet: number of full-time employees 2007-2024 [Dataset]. https://www.statista.com/statistics/273744/number-of-full-time-google-employees/
Organization logo

Alphabet: number of full-time employees 2007-2024

Explore at:
25 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 6, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

At the end of 2024, Alphabet had 183,323 full-time employees. Up until 2015, these figures were reported as Google employees. The alphabet was created through a corporate restructuring of Google in October 2015 and became the parent company of Google as well as several of its former subsidiaries, including Calico, X, CapitalG and Sidewalk Labs. Google’s popularity Google is one of the most famous internet companies in the world, and in May 2024, the most visited multi-platform website in the United States, with over 278 million U.S. unique visitors during that month alone. The California-based multinational internet company has been delivering digital products and services since its creation in 1996. Due to the popularity of its search engine, the verb “to google” has entered the everyday language and the Oxford Dictionary. In addition to that, the company has also crafted itself as one of the most desirable employers, largely due to the many perks it offers in its offices worldwide. Some of the most appealing aspects of working for Google according to its employees include readily available foods and drinks, good working conditions, and ample communal spaces for relaxing, as well as many health benefits and generous salaries. Google offices and employees As of February 2022, Google and Alphabet had more than 70 offices in over 200 cities throughout 50 around the globe, including Germany, Czechia, Finland, Canada, Mexico, Turkey, and New Zealand. The company’s headquarters, also known as “the Googleplex,” are located in Mountain View, California, while other office locations in American states include New York, Georgia, Texas, Washington D.C., and Massachusetts. As Alphabet, the company employs a total over 182 thousand full-time staff, in addition to many other temporary and internship positions. Per the most recent diversity report published in July 2021, most Google employees were male and only 34 percent were female – a figure that has barely changed since the company started reporting on the diversity of its employees in 2016. Furthermore, as of 2021, women occupied only 28.1 percent of leadership positions and 24.6 percent of tech positions. Although Google has regularly stated that the company is committed to promoting ethnic diversity among its personnel, some 54.4 percent of its U.S. employees are White and only 3.3 percent of employees are Black.

Search
Clear search
Close search
Google apps
Main menu