The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
These datasets are from Our World in Data. Their complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.
our data comes from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). We discuss how and when JHU collects and publishes this data. The cases & deaths dataset is updated daily. Note: the number of cases or deaths reported by any institution—including JHU, the WHO, the ECDC, and others—on a given day does not necessarily represent the actual number on that date. This is because of the long reporting chain that exists between a new case/death and its inclusion in statistics. This also means that negative values in cases and deaths can sometimes appear when a country corrects historical data because it had previously overestimated the number of cases/deaths. Alternatively, large changes can sometimes (although rarely) be made to a country's entire time series if JHU decides (and has access to the necessary data) to correct values retrospectively.
our data comes from the European Centre for Disease Prevention and Control (ECDC) for a select number of European countries; the government of the United Kingdom; the Department of Health & Human Services for the United States; the COVID-19 Tracker for Canada. Unfortunately, we are unable to provide data on hospitalizations for other countries: there is currently no global, aggregated database on COVID-19 hospitalization, and our team at Our World in Data does not have the capacity to build such a dataset.
this data is collected by the Our World in Data team from official reports; you can find further details in our post on COVID-19 testing, including our checklist of questions to understand testing data, information on geographical and temporal coverage, and detailed country-by-country source information. The testing dataset is updated around twice a week.
Our World in Data GitHub repository for covid-19.
All we love data, cause we love to go inside it and discover the truth that's the main inspiration I have.
This dataset contains population and population density data from the world bank. The world bank has accurate data from the year 1950, and this data set contains projections from the year 2021 onwards. (see my notebook for more) This dataset also contains the female and male population spilts.
Thanks to the world bank: https://data.worldbank.org/indicator/SP.POP.TOTL
This is a very simple data set aimed at users who wan to get involved with cleaning and visualisations data in python/pandas. See my code for inspiration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
This dataset contains crash information from the last five years to the current date. The data is based on the National Incident Based Reporting System (NIBRS). The data is dynamic, allowing for additions, deletions and modifications at any time, resulting in more accurate information in the database. Due to ongoing and continuous data entry, the numbers of records in subsequent extractions are subject to change.About Crash DataThe Cary Police Department strives to make crash data as accurate as possible, but there is no avoiding the introduction of errors into this process, which relies on data furnished by many people and that cannot always be verified. As the data is updated on this site there will be instances of adding new incidents and updating existing data with information gathered through the investigative process.Not surprisingly, crash data becomes more accurate over time, as new crashes are reported and more information comes to light during investigations.This dynamic nature of crash data means that content provided here today will probably differ from content provided a week from now. Likewise, content provided on this site will probably differ somewhat from crime statistics published elsewhere by the Town of Cary, even though they draw from the same database.About Crash LocationsCrash locations reflect the approximate locations of the crash. Certain crashes may not appear on maps if there is insufficient detail to establish a specific, mappable location.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.
This dataset contains the population distribution by state, gender, sex & region.
The file is in .csv format thus it is accessible everywhere.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
The Ouagadougou Health and Demographic Surveillance System (Ouagadougou HDSS), located in five neighborhoods at the northern periphery of the capital of Burkina Faso, was established in 2008. Data on vital events (births, deaths, unions, migration events) are collected during household visits that have taken place every 10 months.
The areas were selected to contrast informal neighborhoods (40,000 residents) with formal areas (40,000 residents), with the aims of understanding the problems of the urban poor, and testing innovative programs that promote the well-being of this population. People living in informal areas tend to be marginalized in several ways: they are younger, poorer, less educated, farther from public services and more often migrants. Half of the residents live in the Sanitary District of Kossodo and the other half in the District of Sig-Nonghin.
The Ouaga HDSS has been used to study health inequalities, conduct a surveillance of typhoid fever, measure water quality in informal areas, study the link between fertility and school investments, test a non-governmental organization (NGO)-led program of poverty alleviation and test a community-led targeting of the poor eligible for benefits in the urban context. Key informants help maintain a good rapport with the community.
The areas researchers follow consist of 55 census tracks divided into 494 blocks. Researchers mapped all the census tracks and blocks using fieldworkers with handheld global positioning system (GPS) receivers and ArcGIS. During a first census (October 2008 to March 2009), the demographic surveillance system was explained to every head of household and a consent form was signed; during subsequent censuses, new households were enrolled in the same way.
Ouagadougou is the capital city of Burkina Faso and lies at the centre of this country, located in the middle of West Africa (128 North of the Equator and 18 West of the Prime Meridian).
Individual
Resident household members of households resident within the demographic surveillance area. Inmigrants (visitors) are defined by intention to become resident, but actual residence episodes of less than six months (180 days) are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than six months (180 days) are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever residents during the study period (03 Oct. 2009 to 31 Dec. 2014).
Event history data
This dataset contains rounds 0 to 7 of demographic surveillance data covering the period from 07 Oct. 2008 to 31 December 2014.
This dataset is not based on a sample, it contains information from the complete demographic surveillance area of Ouagadougou in Burkina Faso.
Reponse units (households) by Round:
Round Households
2008 4941
2009 19159
2010 21168
2011 12548
2012 24174
2013 22326
None
Proxy Respondent [proxy]
List of questionnaires:
Collective Housing Unit (UCH) Survey Form - Used to register characteristics of the house - Use to register Sanitation installations - All registered house as at previous round are uploaded behind the PDA or tablet.
Household registration (HHR) or update (HHU) Form - Used to register characteristics of the HH - Used to update information about the composition of the household - All registered households as at previous rounds are uploaded behind the PDA or tablet.
Household Membership Registration (HMR) or update (HMU) - Used to link individuals to households. - Used to update information about the household memberships and member status observations - All member status observations as at previous rounds are uploaded behind the PDA or tablet.
Presences registration form (PDR) - Used to uniquely identify the presence of each individual in the household and to identify the new individual in the household - Mainly to ensure members with multiple household memberships are appropriately captured - All presences observations as at previous rounds are uploaded behind the PDA or tablet.
Visitor registration form (VDR) - Used register the characteristics of the new individual in the household - Used to capt the internal migration - Use matching form to facilitate pairing migration
Out Migration notification form (MGN) - Used to record change in the status of residency of individuals or households - Migrants are tracked and updated in the database
Pregnancy history form (PGH) & pregnancy outcome notification form (PON) - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH - All member pregnancy without pregnancy outcome as at previous rounds are uploaded behind the PDA or tablet.
Death notification form (DTN) - Records all deaths that have recently occurred - Includes information about time, place, circumstances and possible cause of death
Updated Basic information Form (UBIF) - Use to change the individual basic information
Health questionnaire (adults, women, child, elder) - Family planning - Chronic illnesses - Violence and accident - Mental health - Nutrition, alcohol, tobacco - Access to health services - Anthropometric measures - Physical limitations - Self-rated health - Food security
Variability of climate and water accessibility - accessibility to water - child health outcomes - gender outcomes - data on rainfall, temperatures, water quality
The data collection system is composed by two databases: - A temporary database, which contains data collected and transferred each day during the round. - A reference database, which contains all data of Ouagadougou Health and Demographic Surveillance System, in which is transferred the data of the temporary database to the end of each round. The temporary database is emptied at the end of the round for a new round.
The data processing takes place in two ways:
1) When collecting data with PDAs or tablets and theirs transfers by Wi-Fi, data consistency and plausibility are controlled by verification rules in the mobile application and in the database. In addition to these verifications, the data from the temporary database undergo validation. This validation is performed each week and produces a validation report for the data collection team. After the validation, if the error is due to an error in the data collection, the field worker equipped with his PDA or tablet go back to the field to revisit and correct this error. At the end of this correction, the field worker makes again the transfer of data through the wireless access points on the server. If the error is due to data inconsistencies that might not be directly related to an error in data collection, the case is remanded to the scientific team of the main database that could resolve the inconsistency directly in the database or could with supervisors perform a thorough investigation in order to correct the error.
2) At the end of the round, the data from the temporary database are automatically transferred into the reference database by a transfer program. After the success of this transfer, further validation is performed on the data in the database to ensure data consistency and plausibility. This still produces a validation report for the data collection team. And the same process of error correction is taken.
Household response rates are as follows (assuming that if a household has not responded for 2 years following the last recorded visit to that household, that the household is lost to follow-up and no longer part of the response rate denominator):
Year Response Rate
2008 100%
2009 100%
2010 100%
2011 98%
2012 100%
2013 95%
Not applicable
CentreId MetricTable QMetric Illegal Legal Total Metric RunDate
BF041 MicroDataCleaned Starts 151624 2017-05-16 13:36
BF041 MicroDataCleaned Transitions 0 314778 314778 0 2017-05-16 13:36
BF041 MicroDataCleaned Ends 151624 2017-05-16 13:36
BF041 MicroDataCleaned SexValues 314778 2017-05-16 13:36
BF041 MicroDataCleaned DoBValues 314778 2017-05-16 13:36
How much time do people spend on social media? As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
World Development Indicators (WDI) by World Bank includes data spanning up to 56 years—from 1960 to 2016. WDI frames global trends with indicators on population, population density, urbanization, GNI, and GDP. These indicators measure the world’s economy and progress toward improving lives, achieving sustainable development, providing support for vulnerable populations, and reducing gender disparities.
World Development Indicators Data is the primary World Bank collection of development indicators, compiled from officially-recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates.
“World Development Indicators” by the World Bank, used under CC BY 3.0 IGO.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:worldbank_wdi
Banner photo by Joshua Rawson-Harris on Unsplash
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.
This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.
The data is available from 31 Dec,2019.
Give people weekly data so that they can use it to make accurate predictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 22.500 % in 2016. This stayed constant from the previous number of 22.500 % for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 22.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 25.500 % in 2000 and a record low of 22.500 % in 2016. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 16.400 % in 2016. This records a decrease from the previous number of 16.500 % for 2015. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 17.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.900 % in 2000 and a record low of 16.400 % in 2016. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
View crash information from the last five years to current date.
This dataset includes crashes in the Town of Cary for the previous four calendar years plus the current year to date.
The data is based on the National Incident Based Reporting System (NIBRS). The data is dynamic, allowing for additions, deletions and modifications at any time, resulting in more accurate information in the database. Due to ongoing and continuous data entry, the numbers of records in subsequent extractions are subject to change.
About Crash Data
The Cary Police Department strives to make Crash data as accurate as possible, but there is no avoiding the introduction of errors into this process, which relies on data furnished by many people and that cannot always be verified. As the data is updated on this site there will be instances of adding new incidents and updating existing data with information gathered through the investigative process.
Not surprisingly, Crash data become more accurate over time, as new crashes are reported and more information comes to light during investigations.
This dynamic nature of Crash data means that content provided here today will probably differ from content provided a week from now. Likewise, content provided on this site will probably differ somewhat from crime statistics published elsewhere by the Town of Cary, even though they draw from the same database.
About Crash Locations
Crash locations reflect the approximate locations of the crash. Certain crashes may not appear on maps if there is insufficient detail to establish a specific, mappable location.
This data is updated daily.
NOTE: This dataset replaces a previous one. Please see below. Chicago residents who are up to date with COVID-19 vaccines by ZIP Code, based on the reported home address and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). “Up to date” refers to individuals who meet the CDC’s updated COVID-19 vaccination criteria based on their age and prior vaccination history. For surveillance purposes, up to date is defined based on the following criteria: People ages 5 years and older: · Are up to date when they receive 1+ doses of a COVID-19 vaccine during the current season. Children ages 6 months to 4 years: · Children who have received at least two prior COVID-19 vaccine doses are up to date when they receive one additional dose of COVID-19 vaccine during the current season, regardless of vaccine product. · Children who have received only one prior COVID-19 vaccine dose are up to date when they receive one additional dose of the current season's Moderna COVID-19 vaccine or two additional doses of the current season's Pfizer-BioNTech COVID-19 vaccine. · Children who have never received a COVID-19 vaccination are up to date when they receive either two doses of the current season's Moderna vaccine or three doses of the current season's Pfizer-BioNTech vaccine. This dataset takes the place of a previous dataset, which covers doses administered from December 15, 2020 through September 13, 2023 and is marked as historical: - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccinations-by-ZIP-Code/553k-3xzc. Data Notes: Weekly cumulative totals of people up to date are shown for each combination ZIP Code and age group. Note there are rows where age group is "All ages" so care should be taken when summing rows. Coverage percentages are calculated based on the cumulative number of people in each ZIP Code and age group who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. For ZIP Codes mostly outside Chicago, coverage percentages are not calculated reliable Chicago-only population counts are not available. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller ZIP Codes with smaller populations. Additionally, the medical provider may report a work address or incorrect home address for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage by geography. All coverage percentages are capped at 99%. Weekly cumulative counts and coverage percentages are reported from the week ending Saturday, September 16, 2023 onward through the Saturday prior to the dataset being updated. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. The Chicago Department of Public Health uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Individuals may receive vaccinations that are not recorded in the Illinois immunization registry, I-CARE, such as those administered in another state, causing underestimation of the number individuals who are up to date. Inconsistencies in records of separate doses administered to the same person, such as slight variations in dates of birth, can result in duplicate records for a person and underestimate the number of people who are up to date. For all datasets related to COVID-19, please
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 28.200 NA in 2016. This records a decrease from the previous number of 28.500 NA for 2015. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 27.700 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 28.500 NA in 2015 and a record low of 25.200 NA in 2000. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 12.400 NA in 2016. This records a decrease from the previous number of 13.300 NA for 2015. LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 14.100 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 15.500 NA in 2005 and a record low of 12.400 NA in 2016. LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Lithuania – Table LT.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.